

ENGINE CONTROL

EFI SYSTEM (3SZ-VE, K3-VE)

3131EW (332-VE, K3-VE)		
BASIC INSPECTION	ES-1	
LOCATION	ES-2	
DIAGNOSTIC TROUBLE CODE CHART	ES-3	
PROBLEM SYMPTOMS TABLE	ES-4	
HOW TO PROCEED WITH TROUBLESHOOTING	ES-6	
CUSTOMER PROBLEM ANALYSIS CHECK SHEET	ES-7	
CHECK / CLEAR DTCs	ES-8	E٩
FREEZE FRAME DATA	ES-10	
CIRCUIT DIAGRAM	ES-12	
ECU TERMINALS	ES-16	
ECU DATA LIST / ACTIVE TEST	ES-21	
FAIL-SAFE CHART	ES-27	
P0105/31	ES-28	
P0110/43	ES-31	
P0115/42	ES-35	
P0120/41	ES-38	
P0130/21	ES-43	
P0135/23	ES-47	
P0141/24	ES-47	
P0136/22	ES-50	
P0171/25	ES-53	
P0172/26	ES-53	
P0300/17	ES-58	
P0301/17	ES-58	
P0302/17	ES-58	
P0303/17	ES-58	
P0304/17	ES-58	
P0325/18	ES-63	
P0335/13	ES-66	
P0340/14	ES-69	
P0350/16	ES-72	
P0420/27	ES-75	
P0443/76	ES-79	
P0500/52	ES-81	
P0505/71	ES-83	
P0535/44	ES-87	
P1105/32	ES-89	
P1300/36	ES-90	
P1346/75	ES-94	
P1349/73	ES-95	
P1351/62	ES-99	
P1510/54	ES-100	
P1560/61	ES-103	
P1600/83	ES-105	
P1601/81	ES-106	
P1656/74	ES-109	
U0101/82	ES-112	
U0121/86	ES-112	
U0156/87	ES-112	
U1000/85	ES-112	
U1002/88	ES-112	
FUEL PUMP CONTROL SYSTEM	ES-115	

ECU POWER SOURCE SYSTEM	ES-120
THROTTLE BODY ASSEMBLY (3SZ-VE) COMPONENTS	ES-125 ES-127 ES-128 ES-129
KNOCK CONTROL SENSOR (3SZ-VE) COMPONENTS REMOVAL INSTALLATION INSPECTION.	ES-130 ES-133 ES-134 ES-134
CAMSHAFT TIMING OIL CONTROL VALVE ASSEMBLY (3SZ-V COMPONENTS REMOVAL INSTALLATION ON-VEHICLE INSPECTION INSPECTION	E) ES-135 ES-136 ES-136 ES-136 ES-137
ENGINE CONTROL COMPUTER (3SZ-VEÅj COMPONENTS REMOVAL INSTALLATION	ES-138 ES-139 ES-139
E.F.I. WATER TEMPERATURE (3SZ-VE) INSPECTION	ES-140
E.F.I. COMPUTER RELAY (3SZ-VE)	ES-141
THROTTLE POSITION SENSOR (3SZ-VE)	ES-142

EFI SYSTEM (3SZ-VE, K3-VE)

BASIC INSPECTION

HINT:

If the malfunction cannot be determined by troubleshooting, the problem area can be narrowed down by performing the following basic inspection.

1. CHECK BATTERY VOLTAGE

(a) Check the condition of the battery.(See page CH - 3.)

2. CHECK WHETHER ENGINE CRANKS

- (a) Make sure that the engine cranks. HINT:
 - If the engine does not crank, check the starting systems.

3. CHECK WHETHER ENGINE STARTS

(a) Make sure that the engine starts. HINT:

If the engine does not start, check fuel pressure and spark.

4. CHECK AIR FILTER

- (a) Check the air filter.HINT:If the air filter is dirty, clean or replace it.
- 5. CHECK ENGINE IDLE SPEED (See page EM 2)
- 6. CHECK IGNITION TIMING (See page EM 1)
- 7. CHECK FUEL PRESSURE (See page FU 3)
- 8. CHECK FOR SPARK (See page IG 1)
- 9. CHECK COMPRESSION (See page EM 2)

LOCATION

DIAGNOSTIC TROUBLE CODE CHART

DTC No.	Diagnostic Item	Lamp	Code Memory	See Page
P0105/31	Air intake pressure sensor signal system	0	0	ES - 28
P0110/43	Intake air temperature sensor signal system	0	0	ES - 31
P0115/42	Coolant temperature sensor signal system	0	0	ES - 35
P0120/41	Throttle sensor signal system	0	0	ES - 38
P0130/21	Front O2 sensor signal system	0	0	ES - 43
P0135/23	Front O2 sensor heater signal system	0	0	ES - 47
P0136/22	Rear O2 sensor signal system	0	0	ES - 50
P0141/24	Rear O2 sensor heater	0	0	ES - 47
P0171/25	Fuel system (lean malfunction)	0	0	ES - 53
P0172/26	Fuel system (rich malfunction)	0	0	ES - 53
P0300/17	Misfire	0	0	ES - 58
P0301/17	Misfire (#1 cylinder)	0	0	ES - 58
P0302/17	Misfire (#2 cylinder)	0	0	ES - 58
P0303/17	Misfire (#3 cylinder)	0	0	ES - 58
P0304/17	Misfire (#4 cylinder)	0	0	ES - 58
P0325/18	Knock sensor signal system	×	0	ES - 63
P0335/13	Engine revolution sensor signal system	0	0	ES - 66
P0340/14	Cam angle sensor signal system	0	0	ES - 69
P0350/16	Ignition primary system	0	0	ES - 72
P0443/76	EVAP purge VSV	0	0	ES - 79
P0420/27	Catalyst deterioration	0	0	ES - 75
P0500/52	Vehicle speed signal system	0	0	ES - 81
P0505/71	ISC valve system	0	0	ES - 83
P0535/44	P0535/44 A/C evaporator temperature sensor signal system		0	ES - 87
P1105/32	Atmospheric pressure sensor signal system	0	0	ES - 89
P1300/36	Ionic current system	0	0	ES - 90
P1346/75	VVT control system (valve timing fail)	0	0	ES - 94
P1349/73	VVT control (advance angle and retard angle fail)	0	0	ES - 95
P1351/62	Timing chain control system	×	0	ES - 99
P1510/54	Starter signal system	0	0	ES - 100
P1560/61	Short to back up power source	0	0	ES - 103

DTC No.	Diagnostic Item	Lamp	Code Memory	See Page
P1600/83	Keyless system/ immobiliser system communication system (malfunction in ECU)	x	0	ES - 105
P1601/81	Keyless / immobiliser system communication system (code does not match, communication error)	x	0	ES - 106
P1656/74	OCV control system	0	0	ES - 109
U0101/82	EAT/ CVT communication (reception)	0	0	ES - 112
U0121/86	ABS communication (reception)	0	0	ES - 112
U0156/87	U0156/87 Meter communication (receiving)		0	ES - 112
U1000/85 EAT communication (transmission)		0	0	ES - 112
U1002/88	CAN communication	0	0	ES - 112

PROBLEM SYMPTOMS TABLE

Symptom	Suspected Area	See Page
	1. Starter assembly	ST - 10
Engine does not crank	2. Starter relay	ST - 21
	3. Neutral start switch system	AT - 57
	1. See flowchart (ECU power source)	ES - 120
	2. Igniter system	IG - 1
No initial combustion (engine does not start)	3. See flowchart (fuel pump control system)	ES - 115
	4. Injector	FU - 12
	5. Crank position sensor system	IG - 14
	1. See flowchart (fuel pump control system)	ES - 115
Incomplete combustion (anging does not start)	2. Igniter system	IG - 1
incomplete compusition (engine does not start)	3. Injector	FU - 12
	4. Crank position sensor system	IG - 14
	1. Throttle body system	ES - 129
	2. See flowchart (fuel pump control system)	ES - 115
	3. Igniter system	IG - 1
Engine does not start but cranks normally)	4. Spark plug	IG - 18
	5. Compression	EM - 2
	6. Injector	FU - 12
	7. Crank position sensor system	IG - 14
	1. Throttle body system	ES - 129
	2. See flowchart (fuel pump control system)	ES - 115
Engine does not start (when cold)	3. Injector	FU - 12
Engine does not start (when cold)	4. Igniter system	IG - 1
	5. Spark plug	IG - 18
	6. Crank position sensor system	IG - 14

Symptom	Suspected Area	See Page
	1. Throttle body system	ES - 129
	2. See flowchart (fuel pump control system)	ES - 115
Engine deep not start (when worm)	3. Injector	FU - 12
Engine does not start (when warm)	4. Igniter system	IG - 1
	5. Spark plug	IG - 18
	6. Crank position sensor system	IG - 14
East idle problem	1. Throttle body system	ES - 129
	2. Spark plug	IG - 18
	1. Throttle body system	ES - 129
Idle speed is too high	2. See flowchart (ECU power source)	ES - 120
	3. Neutral start switch system	AT - 57
	1. Throttle body system	ES - 129
Idle speed is too low	2. Neutral start switch system	AT - 57
	3. See flowchart (fuel pump control system)	ES - 115
	4. Injector	FU - 12
	1. Throttle body system	ES - 129
	2. Injector	FU - 12
Idle is unstable	3. Igniter system	IG - 1
	4. Compression	EM - 2
	5. See flowchart (fuel pump control system)	ES - 115
	6. Spark plug	IG - 18
	1. Throttle body system	ES - 129
Hunting	2. See flowchart (ECU power source)	ES - 120
Honding	3. See flowchart (fuel pump control system)	ES - 115
	4. Spark plug	IG - 17
	1. See flowchart (fuel pump control system)	ES - 115
Stumpling poor acceleration	2. Injector	FU - 12
	3. Igniter system	IG - 1
	4. Spark plug	IG - 17
After fire	1. Igniter system	IG - 1
	2. Injector	FU - 12
	1. See flowchart (fuel pump control system)	ES - 115
Surging	2. Spark plug	IG - 17
	3. Injector	FU - 12
	1. See flowchart (fuel pump control system)	ES - 115
Engine stall (right after starting engine)	2. Throttle body system	ES - 129
	3. Crank position sensor system	IG - 14
	4. Igniter system	IG - 1
	1. Injector	FU - 12
	2. Throttle body system	ES - 129
Engine stall (right after slowing down)	3. Engine control computer	ES - 16
	4. Crank position sensor system	IG - 14
	5. Igniter system	IG - 1
	1. Neutral start switch system	AT - 57
Engine stall (when the shift lever is in the D position)	2. Throttle body system	ES - 129
	3. Crank position sensor system	IG - 14
	4. Igniter system	IG - 1

ES–5

HOW TO PROCEED WITH TROUBLESHOOTING

(a) If the location of the problem is determined, go to A.

(b) If the location of the problem is not determined, go to B.

1. Ask the customer about problems and concerns.

(a) Follow the previous troubleshooting procedure, and use the customer problem analysis check sheet to make sure that the proper questions are asked when interviewing the customer about problems.

VIN Accessor Previous Custome Descripti	Date registe Date problem ries vehicle er profile/characteristics on of symptoms System Conditions Speed problem first occurred()km/h Shift position () range Starting off Immediately after start off () min after start After ()min driving Cold Warm	red n first occurred Driving Conditions Starting off Cruising Cruising Increasing speed Decreasing speed Braking Turning Stopped	Main regio	Regis Odor n/purpos ng light il nditions	stration No. neter reading se of travel lumination Others Accelerator opening ()% Ambient air	Off/On (Proble Freque Always One time Sometime (_)times a	km)) ency only es
Accessor Previous Custome Descripti	Date problem ries vehicle er profile/characteristics ion of symptoms System Conditions Speed problem first occurred()km/h Shift position () range Starting off Immediately after start off Cold Warm Varm	n first occurred	Main regio	ng light il nditions	Iumination Others Accelerator opening ()% Ambient air	Off/On (Proble Freque Always One time Sometime (_)times a)) mm ency only
Accessor Previous Custome Descripti	ries vehicle r profile/characteristics ion of symptoms System Conditions Speed problem first occurred()km/h Shift position () range Starting off Immediately after start off () min after start After ()min driving Cold Warm	Driving Conditions Starting off Cruising Increasing speed Decreasing speed Braking Turning Stopped	Main regio	n/purpos ng light il nditions ll ed road red road	se of travel lumination Others Accelerator opening ()% Ambient air	Off/On (Proble Freque Always One time Sometime (_)times a) m ency only
Previous Custome Descripti Descripti	s vehicle er profile/characteristics ion of symptoms System Conditions Speed problem first occurred()km/h Shift position () range Starting off Immediately after start off () min after start After ()min driving Cold Warm	Driving Conditions Starting off Cruising Increasing speed Decreasing speed Braking Turning Stopped	Main regio	ng light il nditions Il ed road read road	lumination Others Accelerator opening ()% Ambient air	Off/On (Proble Freque Always One time Sometime (_)times a) m ency only es
Custome Descripti Check Results	system Conditions System Conditions Speed problem first occurred()km/h Shift position () range Starting off Immediately after start off () min after start After ()min driving Cold	Driving Conditions Starting off Cruising Increasing speed Decreasing speed Braking Turning Stopped	Warni Road Cc Level Uphill Downhi Dry pav Wet pav Unpave road	ng light il nditions Il ed road red road	lumination Others Accelerator opening ()% Ambient air	Off/On (Proble Freque Always One time Sometime (_)times a) m nncy only es
Check Results	System Conditions Speed problem first occurred()km/h Shift position() range Starting off Immediately after start off () min after start After ()min driving Cold Warm	Driving Conditions	Warni Road Co Level Uphill Downhi Dry pav Wet pav Unpave road	ng light il nditions Il ed road red road	Unination Others Accelerator opening ()% Ambient air	Off/On (Proble Freque Always One time Sometime (_)times a) m ency only es
Check Results	System Conditions Speed problem first occurred()km/h Shift position () range Starting off Immediately after start off () min after start After ()min driving Cold	Driving Conditions	Warni Road Co Level Uphill Downhi Dry pav Wet pav road	ng light il nditions Il ed road red road	Others Accelerator opening ()% Ambient air	Off/On (Proble Freque Always One time Sometime (_)times a) mency only es
Check Results	System Conditions Speed problem first occurred()km/h Shift position() range Starting off Immediately after start off () min after start After ()min driving Cold	Driving Conditions	Warni Road Cc Level Uphill Downhi Dry pav Wet pav Unpave road	ng light il nditions Il ed road /ed road	Others Accelerator opening ()% Ambient air	Off/On (Proble Freque Always One time Sometime (_)times a) mency only es
Check Results	System Conditions Speed problem first occurred()km/h Shift position () range Starting off Immediately after start off () min after start After ()min driving Cold	Driving Conditions	Warni Road Cc Level Uphill Downhi Dry pav Wet pav road	ng light il nditions Il ed road ved road	Others Accelerator opening ()% Ambient air	Off/On (Proble Freque Always One time Sometime (_)times a) m ency only es
Check Results	System Conditions Speed problem first occurred()km/h Shift position () range Starting off Immediately after start off () min after start After ()min driving Cold	Driving Conditions	Road Co Level Uphill Downhi Dry pav Wet pav road	nditions Il ed road ved road	Others Accelerator opening ()% Ambient air	Proble Freque Always One time Sometime	m ency only es
Check Results	System Conditions Speed problem first occurred()km/h Shift position () range Starting off Immediately after start off () min after start After ()min driving Cold Warm	Driving Conditions	Road Co	nditions Il ed road ved road	Others Accelerator opening ()% Ambient air	Proble Freque Always One time Sometime	m ency only es
Check Results	Speed problem first occurred()km/h Shift position() range Starting off Immediately after start off () min after start After ()min driving Cold Warm	 Starting off Cruising Increasing speed Decreasing speed Braking Turning Stopped 	Level	ll ed road ved road	Accelerator opening ()% Ambient air	 Always One time Sometime (_)times a 	only es
Check Results	Shift position () range Shift position () range Starting off Immediately after start off () min after start After ()min driving Cold	□ Increasing speed □ Decreasing speed □ Braking □ Turning □ Stopped	Uphill Downhi Dry pav Wet pav Unpave road	ll ed road ved road	opening ()% Ambient air	□ One time □ Sometime □ (_)times a	only es
Check Results	Starting off Immediately after start off After () min after start Cold Warm	speed Decreasing speed Braking Turning Stopped	Downni Dry pav Wet pav Unpave road	ed road ved road	Ambient air	□ Sometime □ (_)times a	es
Check Results	□ Immediately after start off □ () min after start □ After ()min driving □ Cold □ Warm	□ Decreasing speed □ Braking □ Turning □ Stopped	Unpave road	ed road	Ambientan		a dav
Check Results	☐ () min after start ☐ After ()min driving ☐ Cold ☐ Warm	Braking Turning Stopped	Unpave road		temperature	🔲 ()times a	a week
Results	☐ After ()min driving ☐ Cold ☐ Warm		I road	d/rough	()	□ (_)times a	a month
	Warm		□Snowy/	cy road	Weather		
		Not related		, ,	()		
	$\square Others ()$	Others	□ mannoi	es etc.			
	Additional Items		<u> _</u>	()			
	DTC Inspection						
	Malfunction Indicator		le(s)		Fuel pressur	e when	
Lamp (MIL) Off/On		Malfunction	code(s)(al	noted)	engine stopp	ed	
					Fuel pressur	e 1 min.	
					after engine	stopped	
	Broblem details						
nspectio	Driving conditions and	location when p	problem firs	t			
Results	occurred and reoccurr	ed					
	Reoccurrence conditio	ns					
	Always D Occasio	onal 🛛 Once pi	roblem occ	urs, it co	ntinues 🛛 D	oes not reoc	cur
Dealer N	Name	Office		Person ir	charge	Technician	
Doulor I				515011	, churgo		

CHECK / CLEAR DTCs

- 1. PREPARE FOR INSPECTION
 - (a) Make sure that the throttle valve is fully closed.

- (b) Move the shift lever to the N or P position.
- (c) Turn off the air conditioner.

CHECK DTCs (using DS-II)

- (a) Connect the DS-II to the DLC.
- (b) Turn the ignition switch to the ON position.
- (c) Turn the DS-II power ON.
- (d) Following the prompts on the screen, select CHECK DTCs/ FREEZE FRAME DATA on the DIAGNOSIS - EFI scree, and check for DTCs.

HINT:

(b)

If a DTC is displayed on the DS-II, see IN - 30.

ES

- CHECK DTCs (using the check engine warning light) NOTICE:
 - Turn the ignition switch to the ON position before reading the DTCs, and check that the check engine warning light is flashing.
 - The CHECK MODE cannot be used.
 - (a) Turn the ignition switch off.
 - Using the diagnosis check wire, short terminals 12 (EFIT) and 4 (E) of the DLC.

SST 09843-18020-000 NOTICE:

- Do not connect the diagnosis check wire to the wrong terminals. Doing so may cause malfunctions.
- Use only the dedicated diagnosis check wire.
- (c) Turn the ignition switch to the ON position, and count the number of flashes of the check engine warning light. HINT:
 - If the indicator light does not indicate a DTC (the light does not blink), there may be a malfunction in the TC terminal, VC terminal, or the computer.
 - If the check engine warning light remains on, the wire harness may have a short circuit (due to being pinched or for other reasons) or the computer may be malfunctioning.
 - If an irrelevant DTC is detected, the computer may be malfunctioning.
 - If the check engine warning light comes on at engine speed of approximately1000 r/min or more and no DTC is output, turn the ignition switch to the OFF position and recheck.
- (d) Disconnect diagnosis check wire No.2.

4. CHECK FREEZE DATA (using DS-II)

(a) Using the DS-II, follow the prompts on the screen, and select the DTC that records the freeze data (marked !) from the DTC / FREEZE DATA screen.

HINT:

- The engine condition (ECU data) before and after DTCs are detected can be checked using the time series freeze frame data. (See page ES - 10.)
- The time series freeze frame data is helpful in troubleshooting when the symptom cannot be reproduced.

6.

5. DELETE RECORDED DTCs (using DS-II)

(a) Following the prompts on the screen, select the DTC / FREEZE DATA screen and delete the DTCs.

NOTICE:

- If the DTCs cannot be deleted, turn the ignition switch off, then perform the procedure again.
- Until the cause of problems are clarified, do not delete the DTCs using the DS-II.
- Write the DTCs down before deleting them.

DELETE DTCs (by removing a fuse)

(a) The recorded codes can be deleted by removing the EFI fuse (15A) for more than 60 seconds after turning the ignition switch to the OFF position.

NOTICE:

- Be sure to clear the DTCs and check that a normal code is output after the EFI system inspection is finished.
- Do not delete the DTCs by clearing the battery (removing a fuse) until the cause of the problems is clarified.
- Write the DTCs down before deleting them.

Freeze Frame Data

1. CHECK FREEZE FRAME DATA

- (a) If the symptom can not be reproduced even though a DTC is detected, check the freeze frame data.
 - (1) Connect the DS-II to the DLC.
 - (2) Turn the ignition switch to the ON position.
 - (3) Select DIAGNOSIS \rightarrow EFI \rightarrow DTC / FREEZE DATA.
 - (4) Detected DTCs will be displayed on the DTC screen.
 - (5) Select the DTCs to check the desired freeze data. HINT:

The DTCs are marked with the character, !, and the highlighted codes contain freeze data.

CHECK TIME SERIES FREEZE FRAME DATA

(a) Select the item to check the desired time series freeze data on the freeze data screen.

HINT:

- The previous version of freeze data recorded ECU data only when DTCs occurred (when detected), but time series freeze frame data also records ECU data before and after DTCs are detected.
- Time series freeze frame data can be checked when TIME SERIES FREEZE DATA CAN BE CHECKED is displayed on the freeze data screen.
- The time series freeze frame data can display up to 3 data points, including the DTC inspection point, 1 point for before inspection, and 1 point after inspection.

3. FREEZE DATA CHART

Item	Shorted Item
Coolant temperature	ECT
Air intake pressure	МАР
Engine speed	r/min

Item	Shorted Item
Vehicle speed	VS
Ignition timing advance angle	ITA
Injection volume	TAUX
Injection timing	TAUZ

CIRCUIT DIAGRAM

ECU TERMINALS

		ECU TERMINAL VOLTAGE CHART (E	FI SYSTEM)
Terminal Name (Terminal No.)	Input / Output	Measurement condition	Standard (V)
$\begin{array}{l} BAT \longleftrightarrow E1 \\ (38 \longleftrightarrow - 125) \end{array}$	Input	Always	10-14
+B ←→ E1 (27←→125)	Input	Engine is stopped, ignition switch is ON	10-14
$\begin{array}{l} IGSW \longleftrightarrow E1 \\ (120 \longleftrightarrow 125) \end{array}$	Input	Engine is stopped, ignition switch is ON	10-14
$MRO \leftarrow \rightarrow E1$ $(39 \leftarrow \rightarrow 125)$	Input	Engine is stopped, ignition switch is ON	10-14
$VC \longleftrightarrow E2$ $(56 \longleftrightarrow 19)$	Input	Engine is stopped, ignition switch is ON	4.5-5.5
IG1 ←→ E1 (63←→125)	Output	Engine is idling	Pulse is generated (Waveform 1)
$\begin{array}{c} IG2 \longleftrightarrow E1 \\ (62 \longleftrightarrow 125) \end{array}$	Output	Engine is idling	Pulse is generated (Waveform 1)
$\begin{array}{c} IG3 \longleftrightarrow E1 \\ (61 \longleftrightarrow 125) \end{array}$	Output	Engine is idling	Pulse is generated (Waveform 1)
IG4 ←→ E1 (60←→125)	Output	Engine is idling	Pulse is generated (Waveform 1)
$N1+ \leftrightarrow N1-$ $(59 \leftrightarrow 128)$	Input	Engine is idling	Pulse is generated (Waveform 2)
$\begin{array}{c} N2+ \longleftrightarrow N2- \\ (58 \longleftrightarrow B127) \end{array}$	Input	Engine is idling	Pulse is generated (Waveform 3)
# 10 ←→ E1 (24←→125)	Output	Engine is idling	Pulse is generated (Waveform 4)
# 20 ←→ E1 (23←→125)	Output	Engine is idling	Pulse is generated (Waveform 4)
# 30 ←→ E1 (22←→125)	Output	Engine is idling	Pulse is generated (Waveform 4)
# 40 ←→ E1 (21←→125)	Output	Engine is idling	Pulse is generated (Waveform 4)
$\begin{array}{c} OX1 \longleftrightarrow E2 \\ (123 \longleftrightarrow 19) \end{array}$	Input	O2 sensor is warmed up, constant engine speed of 3000 r/min	Pulse is generated (Waveform 5)
$\begin{array}{c} OX2 \longleftrightarrow E2 \\ (18 \longleftrightarrow 19) \end{array}$	Input	O2 sensor is warmed up, constant engine speed of 3000 r/min	Pulse is generated (Waveform 5)
$KNK \leftrightarrow E2$	lanut	Ensing is idling	Pulse is generated

Engine is idling

Coolant temperature 60 to 120°C

Engine is warmed up

Engine is idling

(the check engine light is off) Disconnect the connector of the coolant temperature sensor.

(the check engine light is on)

Starter switch is ON

Throttle valve is fully closed

Throttle valve is fully opened

Engine is idling

Air conditioner switch is $\mathsf{OFF}\to\mathsf{ON}$

After engine idles for more than 5 seconds

Input

Input

Input

Output

Output

Input

Input

Input

Output

Output

(121←→19)

 $\mathsf{THW} \longleftrightarrow \mathsf{E2}$

 $(54 \leftarrow \rightarrow 19)$ THA $\leftarrow \rightarrow E2$

 $(55 \leftarrow \rightarrow 19)$ $W \leftarrow \rightarrow E1$

(13←→125)

 $W \leftrightarrow E1$

(13←→125)

 $\mathsf{STSW} \leftarrow \to \mathsf{E1}$

 $(107 \leftrightarrow 125)$ $VTH \leftrightarrow E2$

 $(53 \leftarrow \rightarrow 19)$ VTH $\leftarrow \rightarrow E2$

 $(53 \leftarrow \rightarrow 19)$ $ISC \leftarrow \rightarrow E1$

(65←→125)

 $\mathsf{OXH1} \longleftrightarrow \mathsf{E1}$

(15←→125)

(Waveform 6)

0.3-1.3

0.5-4.3

10-14

0-3.5

10-14

0.4-0.8

3.2-5.0

Pulse is generated

(Waveform 7)

0-1

S

	Terminal Name (Terminal No.)	Input / Output	Measurement condition	Standard (V)
	$\begin{array}{l} OXH1 \longleftrightarrow E1 \\ (15 \longleftrightarrow 125) \end{array}$	Output	Engine is stopped, ignition switch is ON	10-14
	$STP \leftarrow \rightarrow E1$ $(43 \leftarrow \rightarrow 125)$	Input	Stop light switch is ON	10-14
	$STP \longleftrightarrow E1$ $(43 \longleftrightarrow 125)$	Input	Stop light switch is OFF	0-0.5
	$\begin{array}{l} ATNE \leftarrow \rightarrow E1 \\ (16 \leftarrow \rightarrow 125) \end{array}$	Output	Engine is stopped, ignition switch is ON	10-14
	$\begin{array}{l} ATNE \leftarrow \rightarrow E1 \\ (16 \leftarrow \rightarrow 125) \end{array}$	Output	Engine is warmed up, accelerator pedal is depressed	Pulse is generated (Waveform 8)
LO	$FC1 \longleftrightarrow E1$ $(35 \longleftrightarrow 125)$	Output	Engine is stopped, ignition switch is ON	10-14
	$FC1^* \leftarrow \rightarrow E1$ $(35 \leftarrow \rightarrow 125)$	Output	Engine is idling	Below 1.2
	REV ←→ E1 (118←→125)	Output	Engine is idling	Pulse is generated (Waveform 9)
	$FAN1 \leftrightarrow E1$ $(37 \leftrightarrow 125)$	Output	Magnetic clutch is OFF	10-14
	$FAN1 \leftrightarrow E1$ $(37 \leftrightarrow 125)$	Output	Magnetic clutch is ON	Below 1
	$\begin{array}{c} OCV+ \longleftrightarrow OCV- \\ (26 \longleftrightarrow \rightarrow 25) \end{array}$	Output	Engine is stopped, ignition switch is ON	Pulse is generated (Waveform 10)
	$EPS \longleftrightarrow E1$ $(12 \longleftrightarrow 125)$	Input	Engine is idling Steering wheel is centered	10-14
	$EPS \leftarrow \rightarrow E1$ $(12 \leftarrow \rightarrow 125)$	Input	Engine is idling Steering wheel is turned	0-1
	ALTC ←→ E1 (134←→125)	Input	Engine is stopped, ignition switch is ON	10-14
	ALT $\leftarrow \rightarrow$ E1 (135 $\leftarrow \rightarrow$ 125)	Input	Engine is stopped, ignition switch is ON	10-14
	$\begin{array}{c} VCPM \longleftrightarrow E2PM \\ (57 \longleftrightarrow 122) \end{array}$	Input	Engine is stopped, ignition switch is ON	4.5-5.5
	$\begin{array}{c} PIM \leftarrow \rightarrow E2PM \\ (52 \leftarrow \rightarrow 122) \end{array}$	Input	Sensor adjusted to stable ambient temperature	3.1-4.1
	$\begin{array}{c} ACEV \leftarrow \to E21 \\ (45 \leftarrow \to 116) \end{array}$	Input	Air conditioning is ON	0.15-4.8
	$E1 \leftrightarrow Body ground$ (125)	Ground	Always (continuity check)	Continuity
	$\begin{array}{c} E2 \longleftrightarrow Body ground \\ (19) \end{array}$	Ground	Always (continuity check)	Continuity
	$\begin{array}{c} E01 \longleftrightarrow Body ground \\ (20) \end{array}$	Ground	Always (continuity check)	Continuity
	$\begin{array}{c} E21 \longleftrightarrow Body ground \\ (116) \end{array}$	Ground	Always (continuity check)	Continuity

*: FAN2 terminal for European models

Waveform 1 (a)

Tester Connection	IG1, IG2, IG3, IG4 $\leftarrow \rightarrow$ E1
Tool setting	5 V/DIV, 10 ms/DIV
Measurement condition	Engine is idling after warming up

- As the engine speed increases, the waveform cycle becomes shorter.
- The oscilloscope waveform shown as an example, does not include noise or chattering waveforms.
- Waveform 2 (b)

Tester Connection	$N1+ \leftrightarrow N1-$
Tool setting	2 V/DIV, 20 ms/DIV
Measurement condition	Engine is idling

HINT:

- As the engine speed increases, the waveform cycle ٠ becomes shorter.
- As the engine speed increases, each waveform cycle becomes shorter.
- Noise may cause DTCs to be recorded.
- Waveform 3 (c)

Tester Connection	$N2+ \leftrightarrow N2-$
Tool setting	2 V/DIV, 20 ms/DIV
Measurement condition	Engine is idling

HINT:

- As the engine speed increases, the waveform cycle becomes shorter.
- As the engine speed increases, each waveform cycle becomes shorter.
- Noise may cause DTCs to be recorded.
- Waveform 4 (d)

Tester Connection	# 10, # 20, # 30, # 40 ←→ E1
Tool setting	20 V/DIV, 20 ms/DIV
Measurement condition	Engine is idling

HINT:

As the engine speed increases, the waveform cycle becomes shorter.

HINT: ٠ A134282

A134283

A134284

1. Oscilloscope waveform

(e) Waveform 5

1. ECU DATA LIST CHART NOTICE:

- As the data list values may vary widely depending on slight measurement errors, the measurement environment, or the state of the vehicle due to wear and tear, it is very difficult to indicate specific standard values (reference values). Therefore, in some cases, an error may occur within the range of reference values.
- For delicate symptoms such as stumbling, rough idle, obtain and compare multiple test data using the same vehicle under the same conditions, and determine problems wholistically by considering all suspected items on the data list.

Item (Shorted Item)	Item Description	Inspection Condition	Reference Value	Problem Area
MIL status (MIL)	•Illumination condition of the check engine warning light •ON: on, OFF: off	Check engine warning light is on \rightarrow off	$ON \to OFF$	W voltage

CARB SPECIFIED DATA CHART

FS

ES-22

ENGINE CONTROL - EFI SYSTEM (3SZ-VE, K3-VE)

	Item (Shorted Item)	Item Description	Inspection Condition	Reference Value	Problem Area
	Number of power train trouble codes (DIAG)	 Indicates the number of DTCs Displayed range: 0 to 255 	-	0	-
ES	Fuel system status of bank 1 (FS1)	 Fuel system status of bank 1 is indicated OL (open loop): conditions are not satisfied to go from open loop to closed loop CL (close loop): oxygen sensor is used as feedback for fuel control OL - Drive: open loop due to drive condition OL - Fault: open loop due to detected system malfunction CL- Fault: close loop, but at least one oxygen sensor is malfunctioning. Only one oxygen sensor is used for fuel control 	Engine is idling after warming up	CL	OX1 Voltage
	Fuel system status of bank 2 (FS2)	 Fuel system status of bank 2 is indicated OL (open loop): conditions are not satisfied to go from open loop to closed loop CL (close loop): oxygen sensor is used as feedback for fuel control OL - Drive: open loop due to drive condition OL - Fault: open loop due to detected system malfunction CL- Fault: close loop, but at least one oxygen sensor is malfunctioning. Only one oxygen sensor is used for fuel control 	-	-	-
	O2 sensor position (O2S11)	•Existence of bank 1 sensor 1 is indicated •ON: yes, OFF: no	-	ON	-
	O2 sensor position (O2S12)	•Existence of bank 1 sensor 2 is indicated •ON: yes, OFF: no	-	ON	-
	O2 sensor position (O2S13)	•Existence of bank 1 sensor 3 is indicated •ON: yes, OFF: no	-	-	-
	O2 sensor position (O2S14)	•Existence of bank 1 sensor 4 is indicated •ON: yes, OFF: no	-	-	-
	O2 sensor position (O2S21)	•Existence of bank 2 sensor 1 is indicated •ON: yes, OFF: no	-	-	-
	O2 sensor position (O2S22)	•Existence of bank 2 sensor 2 is indicated •ON: yes, OFF: no	-	-	-

Item (Shorted Item)	Item Description	Inspection Condition	Reference Value	Problem Area
O2 sensor position (O2S23)	•Existence of bank 2 sensor 3 is indicated •ON: yes, OFF: no	-	-	-
O2 sensor position (O2S24)	•Existence of bank 2 sensor 4 is indicated •ON: yes, OFF: no	-	-	-
OBD requirements (OBD)	OBD requirements are indicated (EOBD)	-	EOBD	-
Calculated load value (LOAD)	•Engine load amount is indicated •Displayed range: 0 to 100%	Engine is idling (air conditioner is OFF, shift lever is in N position)	0-5%	Air cleaner condition Throttle valve condition
Calculated load value (LOAD)	•Engine load amount is indicated •Displayed range: 0 to 100%	Engine speed is 2000 r/ min (air conditioning is OFF, shift lever is in N position)	5-7%	Air cleaner condition Throttle valve condition
Coolant temperature (ECT)	 Indicates engine coolant temperature Displayed range: -40 to 140°C 	Engine warmed up completely	80 to 102°C	THW Voltage
Coolant temperature (ECT)	 Indicates engine coolant temperature Displayed range: -40 to 140°C 	Short circuit in sensor	119 to 140°C	THW Voltage
Coolant temperature (ECT)	 Indicates engine coolant temperature Displayed range: -40 to 140°C 	Short circuit in sensor	-40°C	THW voltage
Air intake pressure (MAP)	 Air intake pressure is indicated as absolute pressure Displayed range: 0 to 120 kPa 	Ignition switch is in ON position, engine is stopped	70 to 104 kPa	•VCPM voltage •PIM voltage
Air intake pressure (MAP)	 Air intake pressure is indicated as absolute pressure Displayed range: 0 to 120 kPa 	Engine is warmed up and idling, air conditioner is OFF	20 to 40 kPa	•VCPM voltage •PIM voltage
Engine speed (R/MIN)	Indicates the engine speed	Engine is stopped (IG ON)	0 r/min	N voltage
Engine speed (R/MIN)	Indicates the engine speed	Constant engine speed	No significant fluctuation	N voltage
Vehicle speed (VS)	Indicates vehicle speed	The vehicle is stopped	0 km/h	SPD voltage
Vehicle speed (VS)	Indicates vehicle speed	Vehicle is running at constant speed	No significant fluctuation	SPD voltage
Ignition timing advance angle (ITA)	 Indicates ignition timing of the 1-cylinder Displayed range: BTDC 63.5 to ATDC 64° 	Engine is cranking (air conditioner is OFF, shift lever is in N position)	4-8°	IG voltage Each sensor voltage
Ignition timing advance angle (ITA)	 Indicates ignition timing of the No.1 cylinder Displayed range: BTDC 63.5 to ATDC 64° 	Engine is idling (air conditioner is OFF, shift lever is in N position)	0-15°	IG voltage Each sensor voltage
Ignition timing advance angle (ITA)	 Indicates ignition timing of the No.1 cylinder Displayed range: BTDC 63.5 to ATDC 64° 	Engine speed is 2000 r/ min (air conditioner is OFF, shift lever is in N position)	20-40°	IG voltage Each sensor voltage

ES-24

ENGINE CONTROL - EFI SYSTEM (3SZ-VE, K3-VE)

	Item (Shorted Item)	Item Description	Inspection Condition	Reference Value	Problem Area
	Intake air temperature (IAT)	 Indicates air temperature Displayed range: -40 to 140°C 	IG ON	Equivalent to ambient temperature	THW voltage
	Intake air temperature (IAT)	 Indicates intake air temperature Displayed range: -40 to 140°C 	Short circuit in sensor	119 to 140°C	THW voltage
ES	Intake air temperature (IAT)	 Indicates intake air temperature Displayed range: -40 to 140°C 	Short circuit in sensor	-40°C	THW voltage
	Opening angle of absolute throttle sensor (TP)	 Indicates opening angle of throttle valve 1 Displayed range: 0 to 100 % 	Accelerator pedal fully depressed (IG ON)	10-24%	VC, VTH voltage (Throttle position sensor No.1)
	Opening angle of absolute throttle sensor (TP)	 Indicates opening angle of throttle valve 1 Displayed range: 0 to 100 % 	Accelerator pedal fully released (IG ON)	64-96%	VC, VTH voltage (Throttle position sensor No.1)
	FrO2 sensor output voltage (O2FV)	 Indicates front O2 sensor output voltage Displayed range: 0 to 1.275 V 	2500 r/min Constant engine speed	0 to 1.0 V	OX1 voltage
	FrO2 short-term fuel trim (O2FP)	 Indicates front O2 sensor feedback trim ratio Displayed range: -100 to 99.2% 	2500 r/min Constant engine speed	-20-20%	OX1 voltage
	RrO2 sensor output voltage (O2RV)	 Indicates rear O2 sensor output voltage Displayed range: 0 to 1.275 V 	2500 r/min Constant engine speed	0.1 to 0.95 V	OX2 voltage
	RrO2 short-term fuel trim (O2RP)	 Indicates rear O2 sensor feedback trim factor Displayed range: -100 to 99.2% 	2500 r/min Constant engine speed	10-70%	OX2 voltage
	Driven distance at time of malfunction (DWM)	 Indicates distance driven at time DTC is recorded Displayed range: 0 to 65535 km 	-	0 to 65535 km	-
	Evaporation purge output (EVAP)	 Indicates duty ratio of evaporation purge VSV output Displayed range: 0 to 100 % 	Engine is idling after warming up	0 %	PRG voltage Voltage of each sensor
	Barometric pressure (BARO)	 Indicates barometric pressure Displayed range: 0 to 255 kPa 	Ignition switch is in ON position, engine is stopped	73 to 110 kPa	-
	Power source voltage (BAT)	 Indicates battery voltage Displayed range: 0 to 16 V 	IG ON	11 to 14 V	BAT voltage

DMC SPECIFIED DATA CHART

Item (Shorted Item)	Item Description	Inspection Condition	Reference Value	Problem Area
Electrical load (DSW)	Indicates that there is electrical load	Light, defogger OFF \rightarrow ON	$OFF\toON$	Voltage of each switch
Air conditioner signal [A/C]	Indicates that air conditioner is operating	Air conditioner OFF \rightarrow ON	$OFF \to ON$	Voltage of each switch
Injection timing (TAUZ)	 Indicates injection timing Displayed range: 0 to 200 msec 	Engine is cool when started \rightarrow completely warmed up	1.4 to 2.5 msec	PIM, THW, OX1 voltage
Injection timing (TAUZ)	 Indicates injection timing Displayed range: 0 to 200 msec 	Engine warmed up and idling (air conditioner is OFF, shift lever is in N position)	1.4 to 1.8 msec	PIM, THW, OX1 voltage
Injection timing (TAUZ)	 Indicates injection timing Displayed range: 0 to 200 msec 	Engine speed is 2000 r/min (air conditioner is OFF, shift lever is in N position)	1.3 to 1.8 msec	PIM, THW, OX1 voltage
Injection timing (TAUZ)	 Indicates injection timing Displayed range: 0 to 200 msec 	Engine speed is 3000 r/min (air conditioner is OFF, shift lever is in N position)	1.0 to 1.5 msec	PIM, THW, OX1 voltage
ISC duty ratio (ISCD)	 Indicates duty ratio of ISC drive signal Displayed range: 0 to 100% 	Engine warmed up and idling (air conditioner is OFF, shift lever is in N position)	6-14%	VC voltage VTH voltage THW voltage
ISC duty ratio (ISCD)	 Indicates duty ratio of ISC drive signal Displayed range: 0 to 100% 	Engine warmed up and idling (air conditioner is ON, shift lever is in N position)	20-60%	VC voltage VTH voltage THW voltage
Actual displacement angle (VT)	 Indicates actual displacement angle of VVT Displayed range: 0 to 50° 	Engine is idling after warming up	0-5°	OCV voltage
Actual displacement angle (VT)	 Indicates actual displacement angle of VVT Displayed range: 0 to 50° 	Engine is warmed up and running at constant speed	0-10°	OCV voltage
Target displacement angle (VTT)	 Indicates target displacement angle of VVT control Displayed range: 0 to 50° 	Engine is idling after warming up	0-5°	OCV voltage
Target displacement angle (VTT)	 Indicates target displacement angle of VVT control Displayed range: 0 to 50° 	Engine is warmed up and running at constant speed	0-10°	OCV voltage
O2 sensor signal (OX)	 Indicates whether air-fuel ratio measured by front O2 sensor is lean or rich 	2500 r/min Constant engine speed	-	OX voltage
VF monitor (VF)	 Indicates learned value of air-fuel ratio compensation Displayed range: 0.75 to 1.25 V 	2500 r/min Constant engine speed	0.75 to 1.25 V	OX voltage
Idle signal (IDL)	 Indicates whether the idle switch is ON or OFF (if the vehicle does not have an idle switch, the ON status is when the throttle is completely closed from the open status) 	Accelerator pedal fully depressed → released	$ON \rightarrow OFF$	VC voltage VTH voltage

ES-26

ENGINE CONTROL - EFI SYSTEM (3SZ-VE, K3-VE)

	Item (Shorted Item)	Item Description	Inspection Condition	Reference Value	Problem Area
	ISC learned value (DLRN)	 Indicates ISC learned value Displayed range: 0 to 100% 	Engine warmed up and idling (air conditioner is OFF, shift lever is in N position)	6-14%	ISC voltage Voltage of each sensor
	ISC learned value (DLRN)	 Indicates ISC learned value Displayed range: 0 to 100% 	Engine warmed up and idling (air conditioner is ON, shift lever is in N position)	6-14%	ISC voltage Voltage of each sensor
	Purge trim ratio (FPG)	Indicates purge trim ratioDisplayed range: 0 to 0.5V	Engine is idling after warming up	0	PRG voltage Voltage of each sensor
ES	Knocking trim advance angle (AKNK)	 Indicates knock sensor trim advance angle Displayed range: 0 to 20° 	Engine is idling after warming up	0-3°	KNK voltage
	Knocking trim advance angle (AKNK)	 Indicates knock sensor trim advance angle Displayed range: 0 to 20° 	4000 r/min Constant engine speed	0-3°	KNK voltage
	TVVT angle equivalency (VTB)	 Indicates VVT angle equivalency Displayed range: 15 to 90° 	Engine is warmed up and idling	15-52°	VTH voltage
	TVVT angle equivalency (VTB)	 Indicates VVT angle equivalency Displayed range: 15 to 90° 	3000 r/min Constant engine speed	15-62°	VTH voltage
	Control duty ratio (DVT)	 Indicates duty ratio of VVT control Displayed range: 0 to 100% 	Engine is warmed up and idling	20-50%	VTH voltage
	Control duty ratio (DVT)	 Indicates duty ratio of VVT control Displayed range: 0 to 100% 	3000 r/min Constant engine speed	20-50%	VTH voltage
	Actual air intake pressure (PMVTB)	 Indicates the actual air intake pressure Displayed range: 0 to 120 kPa 	Engine is stopped	80 to 110 kPa	PIM voltage
	Actual air intake pressure (PMVTB)	 Indicates the actual air intake pressure Displayed range: 0 to 120 kPa 	Engine is warmed up and idling	20 to 40 kPa	PIM voltage
	Actual air intake pressure (PMVTB)	 Indicates the actual air intake pressure Displayed range: 0 to 120 kPa 	2000 r/min Constant engine speed	19 to 39 kPa	PIM voltage
	Power steering signal (PST)	 Indicates power steering signal input 	Steering wheel is centered \rightarrow turned	$OFF \rightarrow ON$	EPS voltage
	Stop lamp signal (STP)	Indicates stop lamp signal input	Brake pedal is released → depressed	$OFF\toON$	STP voltage
	Number of DTCs (DIAG)	Indicates the number of DTCsDisplayed range: 0 to 255	-	-	-

2. ACTIVE TEST

Item	Condition	Constraint Condition
Fuel pump	Fuel pump is ON (active) / OFF (stopped)	-
Purge VSV	Purge control VSV is ON (current) / OFF (no current)	-
All VSV	All VSV for purge control are ON (current) / OFF (no current)	-

Item	Condition	Constraint Condition
T terminal	T terminal is ON (short) / OFF (short released)	-
Radiator fan	Radiator fan is ON (active) / OFF (stopped)	-
ISC stepper	ISC active duty ratio setting (50 % open / 5 % open)	Vehicle is stopped, engine is idling

FAIL-SAFE CHART

If the codes shown below are recorded on the ECU, it will go to a fail-safe mode.

Diagnostic Trouble Code	Fail-safe Operation	Fail-safe Mode Deactivation Condition
P0105/31	 Vacuum sensor value is the pressure estimated from the throttle opening angle and the engine speed. If the signal from the throttle position sensor is abnormal, use the signal from the vacuum sensor as the constant value. If both the throttle opening angle and the engine speed exceed the constant value, decrease the fuel amount. 	Return to normal condition
P0110/43	Use the signal from the intake air temperature sensor as the constant value.	Return to normal condition
P0115/42	Use the signal from the coolant temperature sensor as the constant value.	Return to normal condition
P0120/41	Use the signal from the throttle position sensor as the constant value.	Return to normal condition
P0136/22	Set feedback control to open control.	Return to normal condition
P0325/18	Lag the ignition timing.	Return to normal condition
P0350/16	Stop the fuel injection to the cylinder that has ignition signal problems.	Return to normal condition
P0535/44	Turn off the air conditioner.	Return to normal condition
P1600/83 P1601/81	Stop fuel injection and ignition.	Return to normal condition
P1656/74	Prohibit the oil control valve current control.	Return to normal condition

DTC	P0105/31	AIR	INTAKE	PRESSURE	SENSOR	SIGNAL
		SYS	TEM			

DESCRIPTION

Using a built-in sensor, the vacuum sensor detects the intake manifold pressure as voltage. At the same time, the engine control computer determines the basic injection and ignition timing based on this voltage. The vacuum sensor does not detect barometric pressure as a standard value, but it detects the absolute pressure of the inside of the intake manifold, so it is not effected by high latitude or other barometric pressure changes. Therefore, a constant standard air-fuel ratio is maintained under all conditions.

CIRCUIT DIAGRAM

INSPECTION PROCEDURE

HINT:

Read the freeze frame data using the DS-II. Freeze data records aspects of the engine's condition when malfunctions occur. This information is helpful when troubleshooting.

- 1 READ DS-II DATA (AIR INTAKE PRESSURE)
 - (a) Connect the DS-II to the DLC.
 - (b) Read the air intake pressure shown on the DS-II while the ignition switch is turned to the ON position and the engine is stopped.

Result

NG

Vehicle Condition	Standard
Engine is stopped, ignition switch is ON	80 to 110 kPa
Engine is warmed up and idling (air conditioner is OFF)	20 to 40 kPa
Engine is running at a constant speed of 2000 r/min (air conditioner is OFF)	19 to 39 kPa

CHECK FOR INTERMITTENT PROBLEMS

P0110/43

INTAKE AIR TEMPERATURE SENSOR SIGNAL SYSTEM

DESCRIPTION

The intake air temperature sensor detects the intake air temperature. The resistance of the thermistor built into intake air temperature is low, the resistance of the thermistor increases. Conversely, when the temperature of the intake air is high, the resistance of the thermistor drops. The intake air temperature sensor is connected to the engine control computer, and, through resistance R, 5V power source voltage is supplied to the intake air temperature sensor are connected in series, the resistance changes depending on the intake air temperature sensor are connected in series, the resistance changes depending on the intake air temperature sensor are connected in series, the resistance changes depending on the intake air temperature sensor are connected in series, the resistance changes depending on the intake air temperature and the potential of terminal THA changes. Based on this signal, the engine control computer increases the fuel injection volume to improve drivability during cold engine operation.

DTC No.	DTC Detection Condition 1.Diagnosis Condition 2.Malfunction Condition 3.Malfunction Time 4.Other	Suspected Area	
P0110/24	 IG ON Open or short to intake air temperature sensor circuit 0.5 seconds or more 1 trip 	 Wire harness or connector INTAKE AIR TEMPERATURE SENSOR Engine control computer 	

CIRCUIT DIAGRAM

INSPECTION PROCEDURE

HINT:

• Read the freeze frame data using the DS-II.Freeze data records aspects of the engine's condition when malfunctions occur. This information is helpful when troubleshooting.

1 READ DS-II DATA (INTAKE AIR TEMPERATURE)

(a) Connect the DS-II to the DLC.

(b) Read the intake air temperature indicated on the DS-II while the ignition switch is turned to the ON position and the engine is stopped.

Result

Tester Display	Proceed to
-40°C	A
140°C	В
Equivalent to ambient temperature	C

 \sim

2

Α

READ DS-II DATA (WIRE HARNESS OPEN CIRCUIT INSPECTION)

SST 09843-18020

-40°C

NG

CHECK AND REPLACE ENGINE CONTROL COMPUTER
DTC	D0115/42	COOLANT	TEMPERATURE	SENSOR	SIGNAL
	P0115/42	SYSTEM			

The resistance of the thermistor built into the coolant temperature sensor varies according to the coolant temperature.

DTC No.	DTC Detection Condition Diagnosis Condition Malfunction Condition Malfunction Time Other 	Suspected Area	
P0115/22	 IG ON Open or short in coolant temperature circuit 0.5 seconds or more 1 trip 	Wire harness or connectorCoolant temperatureEngine control computer	

CIRCUIT DIAGRAM

INSPECTION PROCEDURE

HINT:

• Read the freeze frame data using the DS-II.Freeze frame data records aspects of the engine's condition when malfunctions occur. This information is helpful when troubleshooting.

1	READ DS-II DATA (COOLANT TEMPERATURE)

(a) Connect the DS-II to the DLC.

(b) Read the engine coolant temperature displayed on the DS-II while the ignition switch is turned to the ON position and the engine is stopped.

Result

Tester Display	Proceed to
-40 °C	A
140 °C	В
Equivalent to actual coolant temperature	C

SO TO STEP 4

REPAIR OR REPLACE WIRE HARNESS OR CONNECTOR

CHECK AND REPLACE ENGINE CONTROL COMPUTER

DTC	P0120/41	THROTTLE SENSOR SIGNAL SYSTEM
-----	----------	-------------------------------

The throttle position sensor is mounted on the throttle body to detect the opening angle of the throttle valve.

When the throttle valve is fully closed, voltage of approximately 0.7 V is applied to the VTH terminal of the engine control computer. The voltage that is applied to the VTH terminal of the engine control computer increases in proportion to the opening angle of the throttle valve, and the voltage increases from approximately 3.5 V to 5.0 V when the throttle valve is fully opened. The engine control computer determines the operating condition of the vehicle by the voltage input from the VTH terminal, and adjusts the air-fuel ratio, performs fuel-cut control, etc.

DTC No.	DTC Detection Condition 1.Diagnosis Condition 2.Malfunction Condition 3.Malfunction Time 4.Other	Trouble Area
P0120/41	 IG ON Open or short circuit in throttle position sensor circuit 0.5 seconds or more 1 trip 	Throttle position sensorWire harness or connectorEngine control computer

CIRCUIT DIAGRAM

INSPECTION PROCEDURE

HINT:

• Read the freeze frame data using the DS-II. Freeze frame data records aspects of the engine's condition when malfunctions occur. This information is helpful when troubleshooting.

|--|

(b) Read the opening angle of the throttle valve. **Result**

Throttle Valve	Standard			
Fully open	64-96%			
Fully Closed	10-24%			

ES-40

- (a) Connect the SST (sub harness, EFI computer check) to the engine control computer.
- (b) Turn the ignition switch to the ON position.
- Using a tester, measure the voltage between terminals 56 (VC) and 19 (E2) of the engine control computer connector. (For terminal layout, see page ES - 16.)

Standard:

4.5 to 5.5 V

NG

A133549J04

Engine Control Computer

VC

F2

CHECK AND REPLACE ENGINE CONTROL COMPUTER

ES-42

REPAIR OR REPLACE WIRE HARNESS OR CONNECTOR

P0130/21 |FRONT 02 SENSOR SIGNAL SYSTEM

DESCRIPTION

A three-way catalytic converter is used to efficiently remove CO, HC and NO_x from the exhaust gas. The three-way catalytic converter works most efficiently when the air-fuel ratio is close to the stoichiometric ratio. Therefore, if the engine does not operate close to the stoichiometric air-fuel ratio. CO, HC and NO_x cannot be converted efficiently. An oxygen sensor is provided in order help the system maintain the stoichiometric ratio. The oxygen sensor is used to detect the oxygen concentration of the exhaust gas. The oxygen sensor has a characteristic where its voltage output changes suddenly near the stoichiometric air-fuel ratio, if normal combustion is occurring. The engine control computer uses this signal characteristic to allow air-fuel ratio control. When the air-fuel ratio is lean, the oxygen level in the exhaust gas increases. The engine control computer recognizes the lean air-fuel ratio detected by the oxygen sensor. (Low voltage variation: < 0.45 V) When the air-fuel ratio is rich, oxygen levels in the exhaust gas decrease, and the engine control computer determines whether the air-fuel ratio is rich or lean by the electromotive force signal of the oxygen sensor, and controls injection volume. The oxygen sensor has a heater which warms a zirconium element. The heater is controlled by the engine control computer, which applies current to the heater in order to prevent sensor inaccuracy that may occur if the sensor gets cold when the exhaust gas temperature is low (such as when there is a low amount of intake air).

DTC No.	DTC Detection Condition 1.Diagnosis Condition 2.Malfunction Condition 3.Malfunction Time 4.Other	Suspected Area
P0130/21	 Engine warmed up and engine speed lower than 2,500 r/min Steady oxygen sensor output voltage of less than 0.3 V or more than 0.6 V 400 seconds or more after engine started 2 trip 	Wire harness or connectorOxygen sensorEngine control computer

HINT:

Using the DS-II, check the FrO2 sensor output voltage on the data monitor screen. If the FrO2 sensor output voltage stays at 0.02 V or less, the O2 sensor voltage system circuit may be open.

DESCRIPTION

- 1. Start the engine and drive the vehicle for more than 20 seconds at speed above 10 km/h.[*1]
- 2. Allow the engine to idle for approximately 400 seconds.[*2]
- 3. Check the voltage of the FrO2 sensor output. NOTICE:

If this test is not performed accurately, it will be impossible to determine exactly where problems are occurring.

HINT:

If there are any abnormalities, the check warning light will remain on while the procedure is performed. [*2].

CIRCUIT DIAGRAM

INSPECTION PROCEDURE

HINT:

Read the freeze frame data using the DS-II. Freeze frame data records aspects of the engine's condition when malfunctions occur. This information is helpful when troubleshooting.

REPLACE OXYGEN SENSOR

] READ DTCS	(a) (b) (c)	Connect the DS-II to the DLC. Turn the ignition switch to the ON position, and delete the DTCs following the prompts on the DS-II screen. To check the system, warm up the oxygen sensor by performing road test. HINT: Refer to DESCRIPTION for the procedure.
READ DTCS	(0)	
READ DTCS		
	(\mathbf{a})	
	(a) (b)	Connect the DS-II to the DLC. Turn the ignition switch to the ON position, and read the DTCs following the prompts on the DS-II screen. (1) Check if DTC P0130/21 is indicated.
Tester Display		Proceed to
Indicates P0130/21		A
]	В	CHECK FOR INTERMITTENT PROBLEMS
	Tester Display Indicates P0130/21 Indicates a normal code	Tester Display Indicates P0130/21 Indicates a normal code B AND REPLACE ENGINE CONTROL

DTC	P0135/23	FRONT 02 SENSOR HEATER SIGNAL SYSTEM
DTC	P0141/24	REAR 02 SENSOR HEATER

See ES - 43.

DTC No.	DTC Detection Condition 1.Diagnosis Condition 2.Malfunction Condition 3.Malfunction Time 4.Other	Suspected Area	
P0135/23	 IG ON Open in oxygen sensor heater circuit 1.2 seconds or more 2 trip 	Wire harness or connectorOxygen sensorEngine control computer	
P0141/24	 IG ON Open in oxygen sensor No.2 heater circuit 1.2 seconds or more 2 trip 	 Wire harness or connector OXYGEN SENSOR NO.2 Engine control computer 	

CIRCUIT DIAGRAM

HINT: For the wiring diagram, see page ES - 44.

INSPECTION PROCEDURE

HINT:

Read the freeze frame data using the DS-II. Freeze frame data records aspects of the engine's condition when malfunctions occur. This information is helpful when troubleshooting.

1 INSPECT OXYGEN SENSOR

(a) Disconnect the oxygen sensor connector.

(b) CHECK SENSOR HEATER RESISTANCE

Using a tester, measure the resistance between the terminals.
 Standard

Sensor	Tester Connection (Terminal Symbol)	Standard (Measurement Condition)
Oxygen sensor	2 (+B) $\leftarrow \rightarrow$ 1 (HT1A)	5 to 10 (20°C)
Oxygen sensor No.2	2 (+B) $\leftarrow \rightarrow$ 1 (HT2A)	5 to 10 (20°C)

(c) Check short in sensor heater

 Using the tester, check for the short between terminals 1 (HT1A) and 4 (E2).

Standard

Sensor	Tester Connection (Terminal Symbol)	Standard
Oxygen sensor	1 (HT1A) ←→ 4 (E2)	No continuity
Oxygen sensor No.2	1 (HT2A) ←→ 4 (E2)	No continuity

NG

REPLACE OXYGEN SENSOR

ES-48

4

CHECK AND REPLACE ENGINE CONTROL COMPUTER

CHECK WIRE HARNESS AND CONNECTOR (OXYGEN SENSOR EFI RELAY)

(a) Disconnect the oxygen sensor connector.

CHECK ECU POWER SOURCE SYSTEM (SEE ECU POWER SOURCE SYSTEM)

P0136/22 REAR 02 SENSOR SIGNAL SYSTEM

DESCRIPTION

DTC

(See Page ES - 43)

DTC No.	DTC Detection Condition 1.Diagnosis Condition 2.Malfunction Condition 3.Malfunction Time 4.Other	Suspected Area
P0136/27	 During feedback after engine is warmed up Open in oxygen sensor circuit or no rich signals are input during feedback 500 seconds or more 2 trip 	 Wire harness or connector Oxygen sensor No.2 Engine control computer

HINT:

- Using the DS-II, check the RrO2 sensor output voltage on the data monitor screen. If the RrO2 sensor output voltage stays at 0.1 V or less, there be an open in the RrO2 sensor voltage circuit.
- The conditions of the oxygen sensor No.2 output voltage and the air-fuel ratio feedback (F/B calibration value) can be read by using DS-II.

DESCRIPTION

- 1. Start the engine and drive the vehicle for more than 20 seconds at speed above 10 km/h.[*1]
- 2. Allow the engine to idle for approximately 400 seconds.[*2]
- 3. Warm up the engine. [*3]
- 4. Drive the vehicle for 50 seconds or more at a vehicle speed of 70 km/h or more. [*4]
- 5. Check the voltage of the RrO2 sensor output. NOTICE:

If this test is not performed accurately, it will be impossible to determine exactly where problems are occurring. HINT:

- Because oxygen sensor No.2 does not have heater control, drive with a moderate level of load after the engine is completely warmed up.
- If there are any abnormalities, the check engine warning light will remain on while the procedure is performed. [*4].

CIRCUIT DIAGRAM

(See Page ES - 44)

INSPECTION PROCEDURE

HINT:

Read the freeze frame data using the DS-II.Freeze frame data records aspects of the engine's condition when malfunctions occur. This information is helpful when troubleshooting.

1	READ DTCs		
		(a)	Connect the DS-II to the DLC.
		(b)	Turn the ignition switch to the ON position, and delete the DTCs by
			following the prompts on the DS-II screen.(See page ES - 8.)
		(C)	Perform a road test.
		(d)	Check for DTCs following the prompts on the DS-II screen. (See
			page ES - 8.)

(1) Check if DTC P0136/27 is indicated.

Result

Tester Display	Proceed to
Indicates P0136/27	A
Indicates P036/27 and other codes	В
Indicates a normal code	C

HINT:

If DTC P0136/27 and other DTCs are output at the same time, check the other codes first.

A

REPLACE ENGINE CONTROL COMPUTER

DTC	P0171/25	FUEL SYSTEM (LEAN MALFUNCTION)
DTC	P0172/26	FUEL SYSTEM (RICH MALFUNCTION)

There are two types of air-fuel ratio corrections. One is the normal operating air-fuel ratio correction (air-fuel ratio F/B). The other is the memory air-fuel ratio correction (air-fuel ratio F/B learned). Air-fuel ratio F/B is the air-fuel ratio correction that is used to maintain a stoichiometric ratio. The oxygen sensors send signals to the engine control computer indicating whether the current air-fuel ratio is rich or lean comparing to the stoichiometric ratio. When the signal indicates that the condition is rich the injection volume is decreased. When the signal indicates that the condition is lean the injection volume is increased. Air-fuel ratio F/B learned value refers to a value that shows the air-fuel ratio F/B value over a long period of time. Because of differences specific to each engine (such as differences caused by wear over time and changes in the operating environment) this air-fuel ratio F/B learned value varies from a central value. If either the air-fuel ratio F/B value or the air-fuel ratio F/B learned value exceeds a certain value and becomes lean or rich, the engine control computer illuminates the check warning light.

DTC No.	DTC Detection Condition 1.Diagnosis Condition 2.Malfunction Condition 3.Malfunction Time 4.Other	Suspected Area
P0171/25	 While operating the vehicle at 70 km/h with the engine warm, during a normal air-fuel ratio F/B Fuel trim is corrected heavily on the increase side (approx.+ 40 %) 60 seconds or more 2 trip 	 Intake system Fuel system Ignition system Wire harness or connector Oxygen sensor Engine control computer Gas leakage from exhaust system
P0172/26	 While operating the vehicle at 70 km/h with the engine warm, during a normal air-fuel ratio F/B Fuel trim is corrected heavily on the decrease side (approx.+ -35%) 60 seconds or more 2 trip 	 Intake system Fuel system Ignition system Wire harness or connector Oxygen sensor Engine control computer Gas leakage from exhaust system

HINT:

If the total of the air-fuel F/B value and the air-fuel F/B learned value is within 25%, the system is normal.

CIRCUIT DIAGRAM

See Page ES - 44.

INSPECTION PROCEDURE

HINT:

- Check if the engine has stopped in the past because of a fuel cut. If so, the DTC P0171/25 may be recorded. ٠
- Read the freeze frame data using the DS-II. Freeze frame data records aspects of the engine's condition when malfunctions occur. This information is helpful when troubleshooting.

ES-53

SYSTEM

E

2	INSPECT FUEL INJECTOR ASSEMBI	Y		
		(a)	 SST 09843-97201, O9268 Check the resistance. (1) Using the tester, measterminals. Resistance: 12 (20°C) HINT: If the value is not witknown-good part. 	-41047 sure the resistance between the inje hin the standard range, replace wi
Ir	njector B Fuel Pipe	(b)	 Fuel injection volume NOTICE: Work in a location with generation of the set of the	bod air ventilation and watch our ction measuring tool set) to the fuel ful when handling the fuel graduated cylinder. spraying, install the correct-sized e DLC and operate the fuel pump. the SST (EFI inspection wire). inspection wire) to the battery, per nds each) 2 or 3 times, and calculate
			Injection Volume	Difference Between Individual Injectors
	A139327		60 to 73ml HINT: If the value is not w known-good parts. Check for leakage	13 ml or less
			 (1) When removing the SS described above, che injector. Standard: 1 drop or less per 1 	ST from the battery under the condition that there is no leakage from 2 minutes

9	ROAD TEST TO CHECK OPERATION
---	------------------------------

- (a) Connect the DS-II to the DLC.
- (b) Turn the ignition switch to the ON position, and delete the DTCs by following the prompts on the DS-II screen.
- (c) To check the system, warm up the oxygen sensor by performing a road test.
 HINT:

Refer to the oxygen sensor output voltage inspection procedure.

DTC	P0300/17	MISFIRE
DTC	P0301/17	MISFIRE (#1 CYLINDER)
DTC	P0302/17	MISFIRE (#2 CYLINDER)
DTC	P0303/17	MISFIRE (#3 CYLINDER)
DTC	P0304/17	MISFIRE (#4 CYLINDER)

ES

The igniter detects ionic current that is generated by combustion. This ionic current is represented by ionic voltage and input to the engine control computer. If the voltage is lower than the specified value, the engine control computer determines that there has been a misfire and counts the number of detected misfires. If the number of misfires reaches or exceeds a specified value, the engine check warning light illuminates to indicate a problem. If the number of misfires reaches or exceeds the point at which the catalyst may overheat, the engine check warning light flashes.

DTC No.	DTC Detection Condition 1.Diagnosis Condition 2.Malfunction Condition 3.Malfunction Time 4.Other	Suspected Area
P0300/17	 When driving at vehicle speed of 30 to 70 km/h DTCs P0301/17 through P0304/17 are output repeatedly 60 seconds or more 2 trip 	 Ignition system Intake system Fuel system Wire harness or connector Coolant temperature Engine control computer Fuel injector
P0301/17	 When driving at vehicle speed of 30 to 70 km/h Rate of misfires is higher than the set value 60 seconds or more 2 trip 	 Ignition system Intake system Fuel system Wire harness or connector Coolant temperature Engine control computer Fuel injector
P0302/17	 When driving at vehicle speed of 30 to 70 km/h Rate of misfires is higher than the set value 60 seconds or more 2 trip 	 Ignition system Intake system Fuel system Wire harness or connector Coolant temperature Engine control computer Fuel injector
P0303/17	 When driving at vehicle speed of 30 to 70 km/h Rate of misfires is higher than the set value 60 seconds or more 2 trip 	 Ignition system Intake system Fuel system Wire harness or connector Coolant temperature Engine control computer Fuel injector
P0304/17	 When driving at vehicle speed of 30 to 70 km/h Rate of misfires is higher than the set value 60 seconds or more 2 trip 	 Ignition system Intake system Fuel system Wire harness or connector Coolant temperature Engine control computer Fuel injector

CIRCUIT DIAGRAM

INSPECTION PROCEDURE

HINT:

- If any codes are detected other than misfire malfunction, perform troubleshooting for those DTCs first.
- Read the freeze frame data using the DS-II. Freeze frame data records aspects of the engine's condition when malfunctions occur. This information is helpful when troubleshooting.
- To confirm that the repair has been completed, operate the vehicle using one of the driving patterns shown below.
 Driving patterns

Engine speed	Time
Idle	3 and a half minutes or more
1000 r/min	3 minutes or more
2000 r/min	1 and a half minutes or more
3000 r/min	1 minute or more

1 INSPECT THE IGNITION SYSTEM

(See page IG - 1)

NG

REPAIR OR REPLACE IGNITION SYSTEM

NOTICE:

Standard

HINT:

(c)

NG

Injection Volume

60 to 73 ml

known-good parts.

Be extremely careful when handling the fuel tube connector.

Attach the injector to a graduated cylinder. (2) HINT:

> To prevent fuel from spraying, install the correct-sized vinyl tube, etc.

- Connect the DS-II to the DLC and operate the fuel pump. (3)
- Connect the injector to the SST (EFI inspection wire). (4)
- Connect the SST (EFI inspection wire) to the battery, perform (5) fuel injection (15 seconds each) 2 or 3 times, and calculate the average value.

Injectors

13ml or less

ES

Che	ck for leakage.
(1)	When removing the SST from the battery under the conditions
	described above, check that there is no leakage from the
	injector.
	Standard:
	1 dron or less ner 12 minutes

If the value is not within the standard range, replace with

```
REPLACE FUEL INJECTOR ASSEMBLY
```

OK

5

CHECK VACUUM SENSOR

(a)	Turn the ignition switch to the ON position.
-----	--

Measure the voltage between the terminals of the vacuum sensor (b) connecter using the tester.

Standard

Tester Connection (Terminal Symbol)	Standard
3 (VC) ←→ 1 (E2)	4.5 to 5.5 V
2 (PIM) ←→ 1 (E2)	3.1 to 4.1V

Remove the fuel pump relay and crank the engine, then measure the (c) voltage between the terminals of the vacuum sensor connector.

Standard

Tester Connection (Terminal Symbol)	Standard
2 (PIM) ←→ 1 (E2)	Voltage value fluctuates

NG

REPLACE THE VACUUM SENSOR

	6	CHECK WIRE HARNESS AND CONNEC	TOR		
·			 (a) Disconnect conn disconnect the co (b) Using a tester, ch the engine contro injector vehicle sid Standard 	ector A of the engine nnectors of each fuel injec leck whether there is cont ol computer vehicle side de connector.	control computer and tor. inuity or a short between connector and the fuel
S			Installed position	Terminal Connection (Terminal Symbol)	Standard
J			#1 Cylinder	2←→24(#10)	There is continuity and no short between other terminals and body ground
			#2 Cylinder	2←→23(#20)	There is continuity and no short between other terminals and body ground
			#3 Cylinder	2←→22(#30)	There is continuity and no short between other terminals and body ground
			#4 Cylinder	2←→21(#40)	There is continuity and no short between other terminals and body ground
			NG REPAI CONN	R OR REPLACE W	RE HARNESS OR
l	ОК				
[CHEC	K AND REPLACE ENGINE CONTR	ROL COMPUTER		

DTC P0325/18 KNOCK SENSOR SIGNAL SYSTEM
--

The knock control sensor is mounted to the cylinder block to detect engine knocking. Inside the knock control sensor, there is a sensing element. When the sensing element is deformed due to the cylinder block vibration caused by knocking, it generates electricity. When the engine computer senses this voltage, it retards the ignition timing to control the knocking.

DTC No.	DTC Detection Condition 1.Diagnosis Condition 2.Malfunction Condition 3.Malfunction Time 4.Other	Suspected Area	ES
P0325/52	 IG ON Open or short in knock control sensor circuit 0.9 seconds or more 1 trip 	 Wire harness or connector Knock control sensor Installation tightness of knock control sensor Engine control computer 	

CIRCUIT DIAGRAM

INSPECTION PROCEDURE

HINT:

Read the freeze frame data using the DS-II. Freeze frame data records aspects of the engine's condition when malfunctions occur. This information is helpful when troubleshooting.

 Disconnect the engine control computer connector B and the knock control sensor connector.

ENGINE CONTROL - EFI SYSTEM (3SZ-VE, K3-VE)

CHECK AND REPLACE ENGINE CONTROL COMPUTER

DTC	P0335/13	ENGINE SYSTEM	REVOLUTION	SENSOR	SIGNAL
-----	----------	------------------	------------	--------	--------

The crank position sensor system consists of the crank angle sensor plate No.1 and the pickup coil. The crank angle sensor is installed on the crankshaft. It has 30 teeth with 6 missing teeth to allow top dead center to be detected. The NE signal sensor outputs 30 signals per engine revolution. The engine control computer detects the cylinder number and the relative position of the camshaft and angle based on the N2 signal. It detects crankshaft angle and engine speed based on the N1 signal.

DTC No.	DTC Detection Condition 1.Diagnosis Condition 2.Malfunction Condition 3.Malfunction Time 4.Other	Suspected Area
P0335/13	 Cranking N1 signal is not input 2 seconds or more 1 trip 	 Wire harness or connector Crank position sensor Crank angle sensor plate No.1 Engine control computer

CIRCUIT DIAGRAM

INSPECTION PROCEDURE

HINT:

- Read the freeze frame data using the DS-II. Freeze frame data records aspects of the engine's condition when malfunctions occur. This information is helpful when troubleshooting.
- If the problem is not detected after first troubleshooting DTC P0335/13, this may indicate a mechanical system problem.

ES-67

DTC P0340/14 CAM ANGLE SENSOR SIGNAL SYSTEM	
--	--

The cam position sensor (N2 signal) consists of the pickup coil and the timing rotor that is mounted on the camshaft. When the camshaft rotates, the relative positions of the protruding part of the timing rotor and the air gap on the top of the pickup coil changes. This causes the magnetic field to change, generating electromotive force in the pickup coil.

DTC No.	DTC Detection Condition 1.Diagnosis Condition 2.Malfunction Condition 3.Malfunction Time 4.Other	Suspected Area	ES
P0340/14	 When cranking No input of a certain number of cam position sensor - 1 trip 	 Wire harness or connector Cam position sensor Camshaft Engine control computer 	

CIRCUIT DIAGRAM

INSPECTION PROCEDURE

HINT:

- Read the freeze frame data using the DS-II. Freeze frame data records aspects of the engine's condition when malfunctions
 occur. This information is helpful when troubleshooting.
- If the problem is not detected after first troubleshooting DTC P0340/14, this may indicate a mechanical system problem.

HINT:

The function of the engine control computer cam position sensors can be checked using the oscilloscope function of the DS-II.

(a) Connect the DS-II to terminals 58(N2+) and 127 (N2-) of the engine control computer connectors. (For terminal layout, see page ES - 16.)

(b) Set the DS-II to the oscilloscope function.

Item	Condition
Tester Connection	$:N2+ \leftrightarrow N2-$
Tool setting	2 V/DIV, 20 ms/DIV
Measurement condition	While engine is idling

HINT:

A134284

- · As engine speed increases, the amplitudes become larger.
- As engine speed increases, the cycles become shorter.
- DTCs may be recorded due to noise.

NG

NG

REPLACE CAM POSITION SENSOR

DTC

P0350/16 | IGNITION PRIMARY SYSTEM

DESCRIPTION

A direct ignition system has been adopted. Along with increasing ignition accuracy, the direct ignition system reduces high voltage loss and enhances the overall reliability of the ignition system. The direct ignition system performs ignition, using 1 ignition coil for each cylinder. The engine control computer determines the ignition timing and transmits ignition signals (IG) to each cylinder. Based on the IG signals, the power transistor in the igniter cuts off the current in the primary coil. This generates electromotive force in the secondary coil. The electromotive force in the spark plug.

ES

DTC Detection Condition 1.Diagnosis Condition DTC No. 2.Malfunction Condition **Suspected Area 3.Malfunction Time** 4.Other 1. At time of engine start and when engine is • Wire harness or connector operating at 1500 r/min or less IGNITION COIL ASSEMBLY P0350/16 2. No IG signals continuously Engine control computer 3. Approx. 30 seconds 4. 1 trip

A133588

CIRCUIT DIAGRAM

INSPECTION PROCEDURE

HINT:

- Read the freeze frame data using the DS-II. Freeze frame data records aspects of the engine's condition when malfunctions occur. This information is helpful when troubleshooting.
- The inspection method for the No.1 cylinder circuit is shown below. If the DTC P0350/16 is still shown after the test, check the circuit of each cylinder.

REPLACE ENGINE CONTROL COMPUTER

DI	
\mathbf{D}	

27 CATALYST DETERIORATION

DESCRIPTION

The rear O2 sensor detects oxygen levels after the catalyst. If the catalyst has deteriorated, the rear O2 sensor signal looks like that of the front O2 sensor, repeating lean/rich signals in short cycles. Therefore, the timing of the voltage of the lean/rich signal from the rear O2 sensor is calculated and compared to the lean/rich signal from the front 02 sensor. If this voltage exceeds a set value, and the response of the rear O2 sensor from the front O2 sensor signal becomes more rapid than the set value, this indicates that the catalyst has deteriorated. In this case, the DTC shown below will be recorded.

DTC No.	DTC Detection Condition 1.Diagnosis Condition 2.Malfunction Condition 3.Malfunction Time 4.Other	Suspected Area	
P0420/27	 The vehicle is driven at a speed of 50 km/ h, after the engine is completely warmed- up The voltage of the rear O2 sensor signal is large, and the response is rapid 40 seconds or more 2 trip 	 Exhaust system Ignition system Fuel system Engine control computer Wire harness or connector 	

CIRCUIT DIAGRAM

(See Page ES - 44)

INSPECTION PROCEDURE

REPLACE OXYGEN SENSOR NO.2

			(b)	Turn the ignition switch to the ON position, and delete the DTCs by following the prompts on the DS-II screen.
			(c)	To check the system, warm up the oxygen sensor No.2 by performing a road test. HINT: Refer to the procedure for the oxygen sensor No.2 output voltage
				inspection.
	GO			
ES	10	READ DTCs		
			(a)	Connect the DS-II to the DLC.
			(b)	Turn the ignition switch to the ON position, and read the DTCs by
				following the prompts on the DS-II screen.
				(1) Check if DTC P0420/27 is indicated.
				Result
		А		В
		P0420/27 is output again		P0420/27 is not output again
			В	CHECK FOR INTERMITTENT PROBLEMS
	A			
	CHECI	K AND REPLACE ENGINE CON		COMPLITER

DTC P0443/76	EVAP PURGE VSV
--------------	----------------

Evap purge VSV controls evaporation purge volume based on a signal (duty signal) from the engine control computer.Purge volume is determined based on the ON/OFF time ratio (duty ratio).

DTC No.	DTC Detection Condition 1.Diagnosis Condition 2.Malfunction Condition 3.Malfunction Time 4.Other	Suspected Area
P0443/76	 After engine start Evap purge control signal malfunction VSV operates more than 3 times 2 trip 	Evap purge VSVWire harness or connectorEngine control computer

CIRCUIT DIAGRAM

FS

INSPECTION PROCEDURE

DTC	P0500/52	VEHICLE SPEED SIGNAL SYSTEM
-----	----------	-----------------------------

The vehicle speed signal is transmitted to the engine control computer via CAN communication.

DTC No.	DTC Detection Condition 1.Diagnosis Condition 2.Malfunction Condition 3.Malfunction Time 4.Other	Suspected Area
P0500/52	 While driving (when slowing down and during fuel-cut) Vehicle speed signal is not input 3 seconds or more 2 trip 	 Combination meter Speed sensor Wire harness or connector Engine control computer

CIRCUIT DIAGRAM

INSPECTION PROCEDURE

1	READ DS-II DATA (VEHICLE SPEED)		
		(a)	Make sure that the speedometer operates normally.
		(b)	Connect the DS-II to the DLC.
		(c)	Read the vehicle speed displayed on the DS-II.
			Standard:
			The DS-II and speedometer displays are identical.
		0	
NG			

S

		-
DTC	P0505/71	ISC VALVE SYSTEM

The throttle body idle speed control valve assembly (ISCV) of the rotary solenoid type is installed on the throttle body. The intake air that by-passes the throttle valve passes through the passage to the ISCV.

To control the idle speed, the engine control computer controls the intake air passage of the ISC valve and sends a signal to allow the idle speed to be adjusted towards the target idling speed.

DTC No.	DTC Detection Condition 1.Diagnosis Condition 2.Malfunction Condition 3.Malfunction Time 4.Other	Suspected Area
P0505/33	 While engine is idling Short or open in ISCV circuit 3 seconds or more 1 trip 	ISCVWire harness or connectorEngine control computer

CIRCUIT DIAGRAM

INSPECTION PROCEDURE

HINT:

Read the freeze frame data using the DS-II.Freeze frame data records aspects of the engine's condition when malfunctions occur. This information is helpful when troubleshooting.

NG

2 CHECK THROTTLE BODY IDLE SPEED CONTROL VALVE ASSEMBLY (POWER SOURCE CIRCUIT)

4 CHECK THROTTLE BODY IDLE SPEED CONTROL VALVE ASSEMBLY

NOTICE:

- Delete the DTCs after the inspection.
- (a) Remove the ISCV.
- (b) CHECK OPERATION
 - (1) Connect the wire harness to the removed ISCV.

(2) With the ignition in the ON position, check the operation of the valve.

Standard:

Neutral (50% open) \rightarrow Fully closed \rightarrow Fully open \rightarrow Neutral (50% open)

HINT:

Operation should start within 0.5 seconds.

CHECK AND REPLACE ENGINE CONTROL COMPUTER

-				
DTC P053	5/44 A/ SI	C EVAPORATOR GNAL SYSTEM	TEMPERATURE	SENSOR

Cooler thermistor No.1 (evaporator rear sensor) is installed in the evaporator of the air conditioner unit. Cooler thermistor No.1 senses the temperature of the cooled air that has passed through the evaporator as a change in resistance. It outputs this change in resistance to the engine control computer.

DTC Detection Condition 1.Diagnosis Condition DTC No. 2.Malfunction Condition 3.Malfunction Time 4.Other		Suspected Area	
P0535/44	 IG ON Open or short in cooler thermistor No.1 (evaporator rear sensor) circuit Continuously for 0.5 seconds or more 1 trip 	 Cooler thermistor No.1 (evaporator rear sensor) Wire harness or connector Engine control computer 	

CIRCUIT DIAGRAM

INSPECTION PROCEDURE

1	CHECK COOLER THERMISTOR NO.1 (EVAPORATOR REAR SENSOR)				
	(a)	Disconnect the connector of cooler thermistor No.1 (evap	orator real		
		sensor).			

S

ENGINE CONTROL - EFI SYSTEM (3SZ-VE, K3-VE)

ATMOSPHERIC PRESSURE SENSOR SIGNAL SYSTEM

DESCRIPTION

The atmospheric pressure sensor is built into the EFI ECU.

105/32

DTC No.	DTC Detection Condition 1.Diagnosis Condition 2.Malfunction Condition 3.Malfunction Time 4.Other	Suspected Area
P1105/32	 After engine start No signals from atmospheric pressure sensor 1 second or more 1 trip 	Engine control computer

INSPECTION PROCEDURE

1	CLEAR DTCs.				
		(a)	Connect the DS-II to the DLC.		
		(b)	Delete the DTCs using the DS-II.		
\searrow					
2	READ DTCs				
		(a)	Connect the DS-II to the DLC.		
		(b)	Read the DTCs using the DS-II.		
			Standard		
			Result	Proceed to	
			DTC P1105/32 is detected	Α	
			DTC P1105/32 is not detected	В	
		В			IS
A	\supset				
\sim	-				
REPAI	R OR REPLACE ENGINE	CONTROL (COMPUTER		

FS

DTC

| P1

P1300/36 IONIC CURRENT SYSTEM

DESCRIPTION

This system detects engine misfires by using the fact that the ionic current generated by combustion pressure has an identical waveform. If a misfire occurs, ionic current is not generated. Therefore, when the voltage transmitted to the engine control computer is lower than specified, the engine control computer detects a misfire. If the detected ionic current is extremely weak it is amplified by the igniter.

DTC No.	DTC Detection Condition 1.Diagnosis Condition 2.Malfunction Condition 3.Malfunction Time 4.Other	Suspected Area	
P1300/36	 Engine is warmed up and running ICMB signal is not input (continuously input) Approx.30 seconds 2 trip 	 IGNITION COIL ASSEMBLY Fuel system Ignition system Wire harness or connector Engine control computer 	

CIRCUIT DIAGRAM

INSPECTION PROCEDURE

HINT:

- Read the freeze frame data using the DS-II. Freeze frame data records aspects of the engine's condition when malfunctions occur. This information is helpful when troubleshooting.
- The inspection method for the No.1 cylinder circuit is shown below. If the DTC P1300/36 is still shown after the test, check the circuit of each cylinder.

ENGINE CONTROL - EFI SYSTEM (3SZ-VE, K3-VE)

(b) Turn the ignition switch to the ON position.

ENGINE CONTROL - EFI SYSTEM (3SZ-VE, K3-VE)

DTC P01346/75 VVT CONTROL SYSTEM (VALVE TIMING FAIL)

DESCRIPTION

The VVT system controls the open/close timing of the air intake valve to achieve the appropriate timing in accordance with vehicle operating conditions. The engine control computer controls the camshaft and camshaft oil control valves in order to properly adjust the open/close timing of the air intake valve, and changes the relative position between the camshaft and crankshaft by operating the camshaft timing gear assembly.

DTC No.	DTC Detection Condition 1.Diagnosis Condition 2.Malfunction Condition 3.Malfunction Time 4.Other	Suspected Area
P1346/18	 While engine is running Valve timing deviation (cannot achieve targeted valve timing) 5 seconds or more 2 trip 	 Mechanical system malfunction (timing chain jumped a tooth or chain stretched) VALVE TIMING ENGINE CONTROL COMPUTER

INSPECTION PROCEDURE

CHECK AND REPLACE ENGINE CONTROL COMPUTER

DTC	D12/0/72	VVT	CONTROL	(ADVANCE	ANGLE	AND
DIC	F1349//3	RETA	RD ANGLE F	FAIL)		

The VVT system controls the open/close timing of the air intake valve to achieve the appropriate timing in accordance with vehicle operating conditions. The engine control computer controls the camshaft and camshaft oil control valve assembly in order to properly adjust the open/close timing of the air intake valve, and changes the relative position between the camshaft and crankshaft by operating the camshaft timing gear assembly.

DTC No.	DTC Detection Condition 1.Diagnosis Condition 2.Malfunction Condition 3.Malfunction Time 4.Other	Suspected Area	
P1349/59	 Engine speed of 500 to 4000 r/min, and coolant temperature between 80 to 110°C Cannot achieve valve timing within ±5° of target, or valve timing is fixed, does not vary 5 seconds or more 2 trip 	 VALVE TIMING CAMSHAFT TIMING OIL CONTROL VALVE ASSEMBLY CAMSHAFT TIMING GEAR ASSEMBLY VVT SYSTEM OIL PATH Engine control computer 	

CIRCUIT DIAGRAM

INSPECTION PROCEDURE

HINT:

1

Read the freeze frame data using the DS-II. Freeze frame data records aspects of the engine's condition when malfunctions occur. This information is helpful when troubleshooting.

READ DTCs		
()	a)	Connect the DS-II to the DLC.

- (b) Turn the ignition switch to the ON position, and delete the DTCs by following the prompts on the DS-II screen.
- (c) Perform a road test.
- (d) Check for DTCs following the prompts on the DS-II screen.
 - (1) Check if DTC P1349/73 is output. Result:

Standard:

6.9 to 7.9 (20°C)

- (a) Connect the DS-II to the DLC.
- (b) Turn the ignition switch to the ON position, and delete the DTCs by following the prompts on the DS-II screen.
- (c) Perform a road test.

(d) Check for DTCs following the prompts on the DS-II screen.

(1) Check if DTC P1349/73 is output.

Result:

DTC	P1351/62	TIMING CHA

IN CONTROL SYSTEM

DESCRIPTION

The VVT system controls the open/close timing of the air intake valve to achieve the appropriate timing in accordance with vehicle operating conditions. The engine control computer controls the camshaft and the camshaft timing oil control valve in order to properly adjust the open/close timing of the air intake valve, and changes the relative position between the camshaft and crankshaft by operating the camshaft timing gear assembly.

DTC No.	DTC Detection Condition 1.Diagnosis Condition 2.Malfunction Condition 3.Malfunction Time 4.Other	Suspected Area
P1351/62	 While engine is running Valve timing deviation 5 seconds or more 5 trip 	 Mechanical system malfunction (timing chain jumped a tooth or chain stretched) VALVE TIMING Engine control computer

INSPECTION PROCEDURE

ES-99

DTC

P1510/54 STARTER SIGNAL SYSTEM

DESCRIPTION

The starter operation signal is transmitted to the STSW terminal of the engine control computer while the engine cranks. The starter operating signal is used primarily for increasing fuel injection volume when the engine starts.

	DTC No.	DTC Detection Condition 1.Diagnosis Condition 2.Malfunction Condition 3.Malfunction Time 4.Other	Suspected Area
ES	P1510/54	 After engine start There are no ON signals even when engine speed reaches a set value at a vehicle speed of 0 km/h - 1 trip * 	Wire harness or connectorEngine control computer

*: 2 trip for EU specifications.

CIRCUIT DIAGRAM

INSPECTION PROCEDURE

HINT:

This diagnosis procedure assumes that the engine is not malfunctioning and can be cranked with the starter. If the engine cannot be cranked, determine the suspected area using a problem symptoms table. (See page ES - 4)

1	INSPECT ENGINE CONTROL COMPUTER

SST 09842-97209

- (a) Connect the SST (sub harness, EFI computer check) to the engine control computer.
- (b) Turn the ignition switch to the ON position.

ES-102

ENGINE CONTROL - EFI SYSTEM (3SZ-VE, K3-VE)

CHECK AND REPAIR POWER SOURCE SYSTEM

DTC P1560/61 SHORT TO BACK UP POWER SOURCE
--

Even when the ignition switch is turned off, battery power is supplied to the BAT terminal of the engine control computer. This power is used for recording DTC or data when malfunctions occur.

DTC No.	DTC Detection Condition 1.Diagnosis Condition 2.Malfunction Condition 3.Malfunction Time 4.Other	Suspected Area	
P1560/61	 Ignition is in ON position (battery voltage exceeds 10 V) Open to back-up power source circuit - 3 trip 	 Engine control computer Wire harness or connector EFI fuse 	

CIRCUIT DIAGRAM

INSPECTION PROCEDURE

1	CHECK ENGINE CONTROL COMPUTER

SST 09842-97209

(a) Connect the SST (sub harness, EFI computer check) to the engine control computer.

S

CHECK OR REPLACE ENGINE ECU POWER CIRCUIT

		KEYLESS SYSTEM / IMMOBILISER SYSTEM
DTC	P1600/83	COMMUNICATION SYSTEM (MALFUNCTION IN
		ECU)

The transponder key computer assembly (immobiliser ECU) ensures security by controlling the START/END of the communication of matching codes with the engine control computer. It does so in accordance with ignition ON/OFF status and the immobiliser SET/UNSET status. If the communication cannot be matched due to a malfunction in the engine control computer, a DTC is recorded.

DTC No.	DTC Detection Condition 1.Diagnosis Condition 2.Malfunction Condition 3.Malfunction Time 4.Other	Suspected Area
P1600/83	 IG ON Communication stopped with immobiliser ECU 1 second or more 1 trip 	Engine control computer

INSPECTION PROCEDURE

	1	READ DTCs
--	---	-----------

- (a) Connect the DS-II to the DLC.
- (b) Turn the ignition switch to the ON position, and read the DTCs by following the prompts on the DS-II screen. HINT:

If P1600/83 is detected, this indicates that the engine computer is malfunctioning. Replace the engine control computer.

REPLACE ENGINE CONTROL COMPUTER

		KEYLESS	1	IMMOBILISER	SYSTEM
DTC	P1601/81	COMMUNICA	TION	SYSTEM (CODE	DOES NOT
		MATCH, COM	MUN	ICATION ERROR)	1

The transponder key computer assembly (immobiliser ECU) ensures security by controlling the START/END of the communication of matching codes with the engine control computer. It does so in accordance with the ignition ON/OFF status and the immobiliser SET/UNSET status.

ES	DTC No.	DTC Detection Condition 1.Diagnosis Condition 2.Malfunction Condition 3.Malfunction Time 4.Other	Suspected Area
	P1601/81	 IG ON Communication problem with transponder key computer assembly (immobiliser ECU) or code mismatch 1 second or more 1 trip 	 TRANSPONDER KEY COMPUTER ASSEMBLY (IMMOBILISER ECU) Engine control computer Wire harness or connector

CIRCUIT DIAGRAM

INSPECTION PROCEDURE

	1	READ DTCs
--	---	-----------

- (a) Connect the DS-II to the DLC.
- (b) Turn the ignition switch to the ON position, and read the DTCs by following the prompts on the DS-II screen.

(a) Replace with a new or a known-good engine control computer.

(b) After replacing the engine control computer, register the keys, turn the ignition switch to the ON position, then read the DTCs. Standard:

DTC P1601/81 is not output

NG

REPLACE TRANSPONDER KEY COMPUTER ASSEMBLY

ES

רח	
וע	

P1656/74

OCV CONTROL SYSTEM

DESCRIPTION

(See ES - 95)

DTC No.	DTC Detection Condition 1.Diagnosis Condition 2.Malfunction Condition 3.Malfunction Time 4.Other	Trouble Area
P1656/39	 IG ON Short or open to camshaft timing oil control valve assembly and circuit 1 second or more 1 trip 	 Wire harness or connector Camshaft timing oil control valve assembly Engine control computer

CIRCUIT DIAGRAM

(See ES - 95)

INSPECTION PROCEDURE

HINT:

Read the freeze frame data using the DS-II. Freeze frame data records aspects of the engine's condition when malfunctions occur. This information is helpful when troubleshooting.

(a) Disconnect the engine control computer connector A and the connector of the camshaft timing oil control valve assembly.

ОК

CHECK FOR INTERMITTENT PROBLEMS

ES–111

ES

DTC	U0101/82	EAT / CVT COMMUNICATION (RECEPTION)
_		
DTC	U0121/86	ABC COMMUNICATION (RECEPTION)
DTC	U0156/87	METER COMMUNICATION (RECEPTION)
DTC	U1000/85	EAT COMMUNICATION (TRANSMISSION)
DTC	U1002/88	CAN COMMUNICATION

DESCRIPTION

ES

Via CAN communication. the engine control computer sends and receives signals to and from the transmission control computer, the skid control computer and the combination meter.

DTC No.	DTC Detection Condition 1.Diagnosis Condition 2.Malfunction Condition 3.Malfunction Time 4.Other	Suspected Area
U0101/82	 IG ON CANH, CANL open or transmission control computer malfunction 1 second 1 trip 	Wire harness or connectorTransmission control computer
U0121/86	 IG ON CANH, CANL open 1 second 1 trip 	Wire harness or connector
U0156/87	 IG ON HCAN, LCAN open 1 second 1 trip 	Wire harness or connector
U1000/85	 IG ON CANH, CANL open or transmission control computer malfunction 1 second 1 trip 	Wire harness or connector
U1002/88	 IG ON CANH, CANL open or short 1 second 1 trip 	Wire harness or connector

CIRCUIT DIAGRAM

INSPECTION PROCEDURE

1	READ DTCs	
	(a)	Record the output DTCs.
		HINT:

When CAN communication DTCs and related sensor DTCs are detected at the same time, troubleshoot the sensor DTCs after CAN communication has returned to its normal status.

GO TO TROUBLESHOOTING FOR CAN COMMUNICATION SYSTEM

ES

FUEL PUMP CONTROL SYSTEM

DESCRIPTION

While the engine cranks, current flows from the ST terminal of the ignition switch to the starter relay coil, and from the ST terminal to the STSW terminal (STSW signal) of the engine control computer. When the STSW signal and N1 signal are input to the engine control computer, current flows to the fuel pump relay coil via an internal transistor. This turns the relay switch turns ON. The fuel pump receives current and operates. While N1 is input (with the engine running), the fuel pump continues to operate because the transistor switch inside the engine control computer remains ON (F/P relay ON).

CIRCUIT DIAGRAM

FS

INSPECTION PROCEDURE

(b) Using a tester, check for the continuity and short between terminals of each socket.

Standard:

Tester Connection (Terminal Symbol)	Standard
F/P relay 2 terminal $\leftrightarrow \rightarrow$ EFI relay 4 terminal	Continuity and no short between other terminals and body ground
F/P relay 1 terminal $\leftarrow \rightarrow$ E/G fuse 2 terminal	Continuity and no short between other terminals and body ground
EFI relay 2 terminal $\leftarrow \rightarrow$ EFI fuse 2 terminal	Continuity and no short between other terminals and body ground
EFI relay 1 terminal $\leftarrow \rightarrow$ EFI fuse 2 terminal	Continuity and no short between other terminals and body ground

NOTICE:

Be careful not to damage the holder part by pressing it too hard, when inspecting by applying the tester probe to the holder.

REPAIR OR REPLACE WIRE HARNESS OR CONNECTOR

ОК

FS

CHECK AND REPLACE ENGINE CONTROL COMPUTER

7	CHECK FUEL PUMP	
	E TITE T	 (a) CHECK RESISTANCE (1) Using a tester, measure the resistance between terminal 3 and 4 (-) of the fuel pump connector. Reference Value: 0.2 to 3.0 Ω (20 °C) (b) CHECK OPERATION (1) Apply the battery voltage between terminal 3 (+) and 4 (-) of fuel pump connector, and check the motor rotates. NOTICE: Perform the check for a very short time (less than seconds) Keep the pump as far away from the battery possible. Make sure to perform the switching on the battery terminal side.
		NG REPLACE FUEL PUMP
ОК		
8	CHECK WIRE HARNESS OR CON PUMP)	NECTOR (BETWEEN EFI CIRCUIT OPENNING RELAY AND FUEL
		(a) Disconnect the connector of fuel pump.(b) Remove F/P relay.

GO TO RELEVANT CIRCUIT INSPECTION SPECIFIED IN PROBLEM SYMPTOMS TABLE

ECU POWER SOURCE SYSTEM

DESCRIPTION

When the ignition switch is ON, current from the battery flows to the EFI relay coil, causing the EFI relay connection to close. Power is then supplied to the +B terminal of the engine control computer.

CIRCUIT DIAGRAM

INSPECTION PROCEDURE

1	CHECK ENGINE CONTROL COMPUTER (CHECK VOLTAGE)	
	SST 09842-97209	
	(a) Connect the SST (sub harness, EEI computer check) to t	the en

(a) Connect the SST (sub harness, EFI computer check) to the engine control computer.

ENGINE CONTROL - EFI SYSTEM (3SZ-VE, K3-VE)

- (b) Disconnect connector B of the engine control computer.
- Measure the voltage between the engine control computer and the (c) body ground using the tester. (For terminal layout, see page ES - 16.)

Standard

NG

Tester Connection (Terminal Symbol) Standard 125 (E1) $\leftarrow \rightarrow$ Body ground Continuity

> REPAIR OR REPLACE WIRE HARNESS OR CONNECTOR

OK

+B

NG

2

3 CHECK ENGINE CONTROL COMPUTER (CHECK VOLTAGE)

Engine Control Computer

IGSW

A133549J10

A133911J01

SST 09842-97209

- Connect the SST (sub harness, EFI computer check) to the engine (a) control computer.
- Turn the ignition switch to the ON position. (b)
- (c) Measure the voltage between the terminals of the engine control computer connector using a tester. (For terminal layout, see page ES - 16.)

Standard

NG

REPAIR OR REPLACE WIRE HARNESS OR CONNECTOR

MRO

Engine Control Computer

7 CHECK ENGINE CONTROL COMPUTER (CHECK VOLTAGE)

- (a) Connect the SST (sub harness, EFI computer check) to the engine control computer.
- (b) Turn the ignition switch to the ON position.
- (c) Measure the voltage between the terminals of the engine control computer connector using a tester. (For terminal layout, see page ES 16.)

Standard

CHECK FOR INTERMITTENT PROBLEMS

THROTTLE BODY ASSEMBLY (3SZ-VE)

COMPONENTS

REMOVAL

- 1. DISCONNECT NEGATIVE BATTERY TERMINAL (See page RS-164.)
- 2. REMOVE ENGINE UNDER COVER
- 3. DRAIN ENGINE COOLANT (See page CO-9)
- 4. REMOVE AIR CLEANER HOSE NO.1 (See page CO-15)
- 5. REMOVE AIR CLEANER ASSEMBLY (See page EM-146)
- 6. DISCONNECT ACCELERATOR CONTROL CABLE ASSEMBLY (See page EM-147)
- 7. REMOVE VENTILATION HOSE NO.2 (See page EM-147)
- 8. DISCONNECT WATER BY-PASS HOSE
 - (a) Disengage the clamps and disconnect the water by-pass hose.

9. DISCONNECT WATER BY-PASS HOSE NO.2

(a) Disengage the clamps and disconnect water by-pass hose No.2.

10. REMOVE THROTTLE BODY ASSEMBLY

 (a) Disconnect the connector of the throttle body assembly and the wire harness clamps.

- (b) Remove the 2 bolts and throttle body bracket No.2.
- (c) Remove the 3 bolts and the throttle body assembly.
- (d) Remove the O-rings.

ES

INSTALLATION

- 1. INSTALL THROTTLE BODY ASSEMBLY
 - (a) Install a new O-ring.
 - (b) Install the throttle body assembly with the 3 bolts.
 Torque: 21 N*m (214 kgf*cm) Throttle body bracket side 7.5 N*m (77 kgf*cm) Intake manifold side
 - (c) Install throttle body bracket No.2 with the 2 bolts.
 Torque: 7.5 N*m (76 kgf*cm)

(d) Connect the connectors to the throttle body assembly.

2. CONNECT WATER BY-PASS HOSE

(a) Connect the water by-pass hose and install the clamp.

ENGINE CONTROL - THROTTLE BODY ASSEMBLY (3SZ-VE)

- 3. CONNECT WATER BY-PASS HOSE NO.2
 - (a) Connect water by-pass hose No.2 and install the clamp.
- 4. INSTALL VENTILATION HOSE NO.2 (See page EM-166)
- 5. INSTALL ACCELERATOR CONTROL CABLE ASSEMBLY (See page EM-165)
- 6. INSTALL AIR CLEANER ASSEMBLY (See page EM-167)
- 7. INSTALL AIR CLEANER HOSE NO.1 (See page CO-19)
- 8. ADD COOLANT (See page CO-9)
- 9. CHECK FOR COOLANT LEAKS (See page CO-10)
- 10. INSTALL ENGINE UNDER COVER (See page EM-69)
- 11. CONNECT NEGATIVE BATTERY TERMINAL Torque: 5.4 N*m (55 kgf*cm)
- 12. PERFORM INTIALIZATION (See page SS-10.)

INSPECTION

- 1. INSPECT THROTTLE BODY ASSEMBLY
 - (a) Check that the throttle shaft is not loose.
 - (b) Check that none of the ports is clogged.
 - (c) Check that the throttle valve can open and close smoothly.
 - (d) Check that there is no clearance between the throttle stop screw and the lever when the throttle valve is fully open.

KNOCK CONTROL SENSOR (3SZ-VE)

COMPONENTS

REMOVAL

- 1. DISCONNECT NEGATIVE BATTERY TERMINAL (See Page RS-164)
- 2. DRAIN ENGINE COOLANT (See page CO-9)
- 3. DISCHARGE FUEL SYSTEM PRESSURE (See page EM-146)
- 4. REMOVE BATTERY
- 5. REMOVE BATTERY CARRIER (See page EM-146)
- 6. REMOVE ENGINE UNDER COVER
- 7. REMOVE AIR CLEANER HOSE NO.1 (See page CO-15)
- 8. REMOVE AIR CLEANER ASSEMBLY (See page EM-146)
- 9. DISCONNECT ACCELERATOR CONTROL CABLE ASSEMBLY (See page EM-147)
- 10. REMOVE VENTILATION HOSE (See page EM-147)
- 11. REMOVE VENTILATION HOSE NO.2 (See page EM-147)
- 12. DISCONNECT FUEL HOSE NO.1 (See page FU-10)
- 13. REMOVE FUEL DELIVERY PIPE (See page FU-10)
- 14. DISCONNECT WATER BY-PASS HOSE NO.2 (See page ES-127)
- 15. DISCONNECT WATER BY-PASS HOSE (See page ES-127)
- 16. REMOVE THROTTLE BODY ASSEMBLY (See page ES-127)
- 17. REMOVE THROTTLE BODY BRACKET (See page EM-149)
- 18. REMOVE OIL LEVEL GAUGE GUIDE (See page EM-148)
- 19. DISCONNECT VACUUM HOSE ASSEMBLY
- 20. REMOVE INTAKE MANIFOLD (See page EM-149)
- 21. REMOVE KNOCK CONTROL SENSOR
 - (a) Disconnect the connector.
 - (b) Remove the nut, then remove the knock control sensor.

INSTALLATION

- 1. INSTALL KNOCK CONTROL SENSOR
 - (a) Install the knock control sensor with the nut in the direction shown in the illustration.
 - Torque: 20 N*m (204 kgf*cm)
 - (b) Connect the connector.
- 2. INSTALL INTAKE MANIFOLD (See page EM-164)
- 3. INSTALL THROTTLE BODY ASSEMBLY (See page EM-164)
- 4. INSTALL FUEL INJECTOR ASSEMBLY (See page FU-11)
- 5. INSTALL FUEL DELIVERY PIPE (See page FU-11)
- 6. INSTALL OIL LEVEL GAUGE GUIDE (See page EM-58)
- 7. CONNECT FUEL HOSE NO.1 (See page FU-12)
- 8. CONNECT ACCELERATOR CONTROL CABLE ASSEMBLY (See page EM-165)
- 9. INSTALL VENTILATION HOSE (See page EM-166)
- 10. INSTALL VENTILATION HOSE NO.2 (See page EM-166)
- 11. INSTALL BATTERY CARRIER (See page EM-167)
- 12. INSTALL BATTERY
- 13. CONNECT NEGATIVE BATTERY TERMINAL (See page EM-167)
- 14. INSTALL AIR CLEANER ASSEMBLY (See page EM-167)
- 15. INSTALL AIR CLEANER HOSE NO.1 (See page CO-19)
- 16. ADD COOLANT (See page CO-9)
- 17. CHECK FOR COOLANT LEAKS (See page CO-10)
- 18. CHECK COOLANT (See page CO-10)
- 19. PERFORM INITIALIZATION (See page SS-10.)

INSPECTION

- 1. CHECK KNOCK CONTROL SENSOR
 - (a) Check the resistance.
 - (1) Using a tester, measure the resistance between the connector terminals.
 - Standard: 120 to 280 Ω

COMPONENTS

REMOVAL

- 1. REMOVE CAMSHAFT TIMING OIL CONTROL VALVE ASSEMBLY
 - (a) Disconnect the connector.
 - (b) Remove the bolt, then remove the camshaft timing oil control valve assembly.

ES

INSTALLATION

- 1. INSTALL CAMSHAFT TIMING OIL CONTROL VALVE ASSEMBLY
 - (a) Apply engine oil to a new O-ring.
 - (b) Install the camshaft timing oil control valve assembly with the bolt.

Torque: 7.5 N*m (76 kgf*cm)

(c) Connect the connector.

ON-VEHICLE INSPECTION

- 1. CHECK CAMSHAFT OIL CONTROL VALVE ASSEMBLY OPERATION
 - (a) Connect the DS-II to the DLC.
 - (b) Warm up the engine.
 - (c) Following the prompts on the screen, select ACTIVE TEST, then VVT CONTROL and check the idling speed in both the INACTIVE or ACTIVE modes.

Item	Standard
Inactive (OCV OFF)	Normal engine speed
Active (OCV ON)	Rough idle or engine stop

Standard

(d) Following the prompts on the screen, select ACTIVE TEST, then VVT LINEAR DRIVE BANK 1 and check the idling speed at the max retard angle (-100%).

Item	Standard
When normal	Normal engine speed
Max retard angle (-100%)	Rough idle or engine stop

INSPECTION

1. CHECK CAMSHAFT TIMING OIL CONTROL VALVE ASSEMBLY

- (a) Check the resistance.
 - (1) Using a tester, measure the resistance between the terminals.

Standard:

- (b) Check operation.
 - (1) Apply battery voltage across the terminals, then check that the spool valve operates.

NOTICE:

Make sure the spool valve is not stuck. HINT:

If the spool valve does not return due to foreign matter like sludge, the pressure may leak slightly toward the advanced side. This leakage may cause DTCs to be recorded.

6.9 to 7.9 Ω (when 20°C)

Standard

FS

ES-137

ENGINE CONTROL COMPUTER (3SZ-VE)

COMPONENTS

- 1. DISCONNECT NEGATIVE BATTERY TERMINAL (See page RS-164.)
- 2. REMOVE GLOVE COMPARTMENT DOOR ASSEMBLY (See page IP-11)
- 3. INSTALL INSTRUMENT PANEL UNDER COVER NO.2 (See page IP-12)
- 4. REMOVE FRONT DOOR SCUFF PLATE LH
- 5. REMOVE COWL SIDE TRIM BOARD LH
- 6. REMOVE ENGINE CONTROL COMPUTER
 - (a) Remove each connector.
 - (b) Remove the 2 bolts and the engine control computer. **NOTICE:**

Be careful not to drop the engine control computer.

- 7. REMOVE ENGINE CONTROL COMPUTER BRACKET NO.1
 - (a) Disengage the claw and remove engine control computer bracket No.1 from the engine control computer.
- 8. REMOVE ENGINE CONTROL COMPUTER BRACKET NO.2
 - (a) Disengage the claw and remove engine control computer bracket No.2 from the engine control computer.

INSTALLATION

- 1. INSTALL ENGINE CONTROL COMPUTER BRACKET NO.2
 - (a) Install engine control computer bracket No.2 to the engine control computer.
- 2. INSTALL ENGINE CONTROL COMPUTER BRACKET NO.1
 - (a) Install engine control computer bracket No.1 to the engine control computer
- 3. INSTALL ENGINE CONTROL COMPUTER
 - (a) Install the engine control computer with the 2 bolts.
 - (b) Connect each connector.
- 4. INSTALL COWL SIDE TRIM BOARD LH
- 5. INSTALL FRONT DOOR SCUFF PLATE LH
- 6. INSTALL INSTRUMENT PANEL UNDER COVER NO.2 (See page IP-17)
- 7. INSTALL GLOVE COMPARTMENT DOOR ASSEMBLY (See page IP-18)
- 8. CONNECT NEGATIVE BATTERY TERMINAL Torque: 5.4 N*m (55 kgf*cm)
- 9. PERFORM INITIALIZATION (See page SS-10.)

E.F.I. WATER TEMPERATURE (3SZ-VE)

INSPECTION

1.

CHECK EFI COOLANT TEMPERATURE

(a) Check the resistance.

(1) Using a tester, measure the resistance between the terminals.

Standard

Measurement Condition	Standard
When approx. 20°C	2.32 to 2.59 k Ω
When approx. 80°C	0.310 to 0.326 kΩ

NOTICE:

Make sure that the terminal area does not get wet when applying the sensor to water during inspection.Wipe the sensor dry after the check.

=S

E.F.I. COMPUTER RELAY (3SZ-VE)

INSPECTION

1. EFI COMPUTER RELAY

- (a) Check for continuity.
 - (1) Using the SST (electrical tester), check the continuity between the terminals of the connector.

Standard

Terminals	Continuity
1←→2	Continuity
3←→5	No continuity

(2) Using a tester, make sure that there is continuity between terminals 3 and 5 when battery voltage is applied between terminals 1 and 2.

Standard:

Continuity

THROTTLE POSITION SENSOR (3SZ-VE)

INSPECTION

- 1. CHECK RESISTANCE
 - (a) Disconnect the throttle position sensor connector.
 - (b) Using a tester, measure the resistance between the throttle position sensor connector terminals.

Standard

Tester Connection (Terminal Symbol)	Throttle Valve	Resistance
1 (VC) $\leftarrow \rightarrow$ 3 (VTH)	-	2.5 to 5.9 k Ω
3 (VTH) $\leftarrow \rightarrow$ 2 (E2)	Fully Closed	0.2 to 5.7 k Ω
3 (VTH) $\leftarrow \rightarrow$ 2 (E2)	Fully open	2.0 to 10.2 k Ω

